首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   6篇
  国内免费   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   7篇
  2010年   14篇
  2009年   11篇
  2008年   9篇
  2007年   12篇
  2006年   13篇
  2005年   11篇
  2004年   1篇
  2003年   8篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   12篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   7篇
  1992年   1篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1979年   1篇
  1977年   2篇
  1958年   1篇
  1957年   3篇
  1954年   2篇
  1953年   2篇
  1952年   1篇
  1950年   2篇
排序方式: 共有183条查询结果,搜索用时 93 毫秒
71.
72.
73.
For Homo sapiens , inclusive fitness theory goes well beyond 'kin'. As William Hamilton hypothesized, genes can increase the probability of their own survival by bringing about the reproduction of not only family members with whom they share copies, but also of any individuals with whom they share copies. Research with Hamilton's theory on people is less well known and remains controversial. This review shows: (1) spouses and close friends assort on blood groups and that similarity predicts fertility; (2) twin and adoption studies find genes rather than upbringing cause people to positively assort; (3) phenotype matching is more pronounced on more heritable items within sets of homogeneous traits; (4) bereavement studies find grief is greater following the death of a more similar co-twin or child; (5) studies of face perception find people prefer and trust those who look like them; and (6) DNA variance within and between ethnic groups is equivalent to that within and between families.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 8–12.  相似文献   
74.
Monitoring changes in vegetation growth has been the subject of considerable research during the past several decades, because of the important role of vegetation in regulating the terrestrial carbon cycle and the climate system. In this study, we combined datasets of satellite‐derived Normalized Difference Vegetation Index (NDVI) and climatic factors to analyze spatio‐temporal patterns of changes in vegetation growth and their linkage with changes in temperature and precipitation in temperate and boreal regions of Eurasia (> 23.5°N) from 1982 to 2006. At the continental scale, although a statistically significant positive trend of average growing season NDVI is observed (0.5 × 10?3 year?1, P = 0.03) during the entire study period, there are two distinct periods with opposite trends in growing season NDVI. Growing season NDVI has first significantly increased from 1982 to 1997 (1.8 × 10?3 year?1, P < 0.001), and then decreased from 1997 to 2006 (?1.3 × 10?3 year?1, P = 0.055). This reversal in the growing season NDVI trends over Eurasia are largely contributed by spring and summer NDVI changes. Both spring and summer NDVI significantly increased from 1982 to 1997 (2.1 × 10?3 year?1, P = 0.01; 1.6 × 10?3 year?1P < 0.001, respectively), but then decreased from 1997 to 2006, particularly summer NDVI which may be related to the remarkable decrease in summer precipitation (?2.7 mm yr?1, P = 0.009). Further spatial analyses supports the idea that the vegetation greening trend in spring and summer that occurred during the earlier study period 1982–1997 was either stalled or reversed during the following study period 1997–2006. But the turning point of vegetation NDVI is found to vary across different regions.  相似文献   
75.
76.
77.
78.
Climatic changes result in an increased in mean temperature and in a higher incidence of extreme weather events such as heat and cold waves. For ectotherms, such as insect parasitoids, the ability to remain active under extreme climatic conditions is a significant key to fitness. The body size of individuals, and in particular their surface to volume ratio, may play a role in their resistance to thermal conditions. The thermal tolerances are investigated of two closely‐related sympatric parasitoid species [Aphidius avenae Haliday and Aphidius rhopalosiphi De Stefani‐Perez (Hymenoptera: Aphidiinae)] that have a similar ecology but differ in body size and phenologies. The critical thermal limits of individuals are assessed in both sexes of each parasitoid species and the influence of surface–volume ratios on their thermal tolerances. Aphidius avenae is less resistant to low temperatures and more resistant to high temperatures than A. rhopalosiphi. The lower surface to volume ratio of A. avenae individuals may help them to remain active in summer when experiencing heat waves. However, body size is not the sole factor that plays a role in differences of thermal tolerance between species and body size may not be an adaptation to extreme temperatures but rather a by‐product of developmental regulation. Closely‐related sympatric species from the same ecological guild can have different thermal tolerances that may allow them to occur within the same habitat. The present study also highlights the importance of clearly defining how to measure critical thermal limits to determine the thermal tolerance of a species.  相似文献   
79.
Earlier studies in the tropical Indo-Pacific have grossly underestimated the richness of macrofauna species at spatial scales relevant to conservation and management as a result of insufficient collecting and sorting effort. A massive collecting effort involving 400 day-persons at 42 discrete stations on a 295-km2 site on the west coast of New Caledonia, south-west Pacific, revealed 2738 species of marine molluscs. This is several times the number of species recorded from any area of comparable extension anywhere in the world. Spatial and habitat heterogeneity is high with 32% of the species collected at a single station. With 20% of the species represented by single specimens (0.4% of all catches), rare species make up a considerable proportion of the fauna. This justifies the parallel drawn between coral reefs and rain forests in terms of species diversity. The real richness of many soft-bodied marine taxa is probably underestimated, as evidenced by the fact that 28.5% of the mollusc species present at the study site are represented in the samples only by empty shells. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 421–436.  相似文献   
80.
The invasive ant species Wasmannia auropunctata displays both ecologically dominant and non‐dominant populations within its native range. Three factors could theoretically explain the ecological dominance of some native populations of W. auropunctata: (i) its clonal reproductive system, through demographic and/or adaptive advantages; (ii) its unicolonial social organization, through lower intraspecific and efficient interspecific competition; (iii) the human disturbance of its native range, through the modification of biotic and abiotic environmental conditions. We used microsatellite markers and behavioural tests to uncover the reproductive modes and social organization of dominant and non‐dominant native populations in natural and human‐modified habitats. Microsatellite and mtDNA data indicated that dominant and non‐dominant native populations (supercolonies as determined by aggression tests) of W. auropunctata did not belong to different evolutionary units. We found that the reproductive system and the social organization are neither necessary nor sufficient to explain W. auropunctata ecological dominance. Dominance rather seems to be set off by unknown ecological factors altered by human activities, as all dominant populations were recorded in human‐modified habitats. The clonal reproductive system found in some populations of W. auropunctata may however indirectly contribute to its ecological dominance by allowing the species to expand its environmental niche, through the fixation over time of specific combinations of divergent male and female genotypes. Unicoloniality may rather promote the range expansion of already dominant populations than actually trigger ecological dominance. The W. auropunctata model illustrates the strong impact of human disturbance on species’ ecological features and the adaptive potential of clonal reproductive systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号