首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   2篇
  国内免费   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   11篇
  2009年   11篇
  2008年   9篇
  2007年   12篇
  2006年   13篇
  2005年   9篇
  2004年   1篇
  2003年   8篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   12篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1954年   1篇
排序方式: 共有162条查询结果,搜索用时 343 毫秒
121.
1. In temporary rivers, viewed as coupled terrestrial–aquatic ecosystems, spatial and temporal transition zones between aquatic and terrestrial conditions are common and occur simultaneously. 2. The effects of artificial rewetting on terrestrial and aquatic invertebrate assemblages were examined in dry sediments collected from the Albarine River, France. Rewetted sediments had previously been dry for between 0.1 and 142 days. Dry sediments were collected directly from the streambed (DS) and from riparian gravel bars (RGB). 3. We first predicted that invertebrate responses to rewetting would vary with the duration of the preceding dry period. Second, we predicted convergence of the invertebrate assemblages in DS and RGB sediments with increasing duration of the dry period. Third, we predicted that an aquatic ‘invertebrate seedbank’ (aquatic life stages that persist within streambed sediments during dry periods) would contribute substantially to the resilience of benthic assemblages. 4. Results indicated that the duration of the dry period was the primary driver of aquatic and terrestrial responses to artificial rewetting. The density and richness of aquatic taxa decreased with the duration of the dry period in both DS and RGB sediments, whereas the density of terrestrial invertebrates increased in DS sediments. 5. No convergence between DS and RGB assemblage composition was observed with an increasing dry period. Although there were more aquatic organisms in DS sediments than in RGB sediments, there was no difference in taxonomic richness between sediment types. Even after prolonged dry periods (142 days), there was typically a lower density and taxonomic richness of terrestrial invertebrates in DS sediments than in adjacent RGB sediments. 6. The results suggest that the aquatic invertebrate seedbank could contribute substantially to the resilience of benthic assemblages in the Albarine River, in addition to other mechanisms such as drift and oviposition. Of the taxa in the benthos before and after the summer dry period, 65% were also recovered from artificially rewetted DS sediments. The simultaneous presence of temporal and spatial terrestrial–aquatic transition zones in temporary rivers increases successional diversity (i.e. mosaics of dry and saturated streambed patches at various stages of terrestrial and aquatic succession). This contribution to biodiversity emphasises the need to protect dry reaches of temporary rivers.  相似文献   
122.
1. Dam presence is commonly associated with strong accumulation of polluted sediments. In spite of this context of multiple stressors, physical effects are often solely considered in the ecological assessment of the dam impacts. 2. We studied four ‘reservoir/downstream reach’ systems differing in levels of sediment contamination in reservoirs. Using assemblages and biotrait (i.e. ecological or biological attribute) responses of macroinvertebrate communities and leaf litter breakdown, we examined the individual effects and potential interactions between sediment contamination and dam presence along the gradient of ecotoxic pressure. 3. Leaf breakdown rates ranged from 0.0044° per day in the most contaminated reservoir to 0.0120° per day in the reference reservoir. Comparisons of community trait profiles among reservoirs highlighted a gradient of trait responses to sediment contamination. 4. In the absence of toxic contamination, the dam‐induced modifications in biotraits of invertebrate assemblages were not related to a reduction of leaf litter breakdown. Conversely, contaminated sediment in reservoir induced strong functional disturbances (i.e. bioecological shifts and reduction of leaf litter breakdown) downstream of dams. 5. Key biotrait categories positively related to leaf litter breakdown rate have been identified. They corresponded mainly to shredders and/or small‐sized (<0.5 cm) insects, using aquatic (e.g. crawlers) or aerial (e.g. fliers) active dispersal strategies. In addition, trait categories positively correlated to contamination level have been considered as ‘response’ traits. They corresponded to large‐sized (>4 cm) species, having several generations per year (polyvoltin), using asexual reproduction and/or disseminating by drift (aquatic, passive). 6. In the current context of ecological continuity restoration, this study has identified the risks associated with the presence of historical contamination in the run‐of‐river reservoirs for downstream ecosystem health.  相似文献   
123.
124.
Many bird species face seasonal and spatial variation in the availability of the specific food required to rear chicks. Caterpillar availability is often identified as the most important factor determining chick quality and breeding success in forest birds, such as tits Parus spp. It is assumed that parents play an important role in mediating the effect of environment on chick development. A reduction in prey availability should therefore result in increased foraging effort to maintain the amount of food required for optimal chick development. To investigate the capacity of adults to compensate for a reduction in food supply, we compared the foraging behaviour of Blue Tits Parus caeruleus breeding in rich and poor habitats in Corsica. We monitored the foraging effort of adults using radiotelemetry. We also identified and quantified prey items provided to nestlings by using a video camera mounted on the nest. We found that the mean travelling distance of adults was twice as great in the poor habitat as it was in the rich. Despite the marked difference in foraging distance, the proportion of optimal prey (caterpillars) in the diet of the chicks and the total biomass per hour per chick did not differ between the two habitats. We argue that relationships between habitat richness, offspring quality and breeding success cannot be understood adequately without quantifying parental effort.  相似文献   
125.
126.
127.
Continental‐scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill‐suited for assessment of species‐specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high‐resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36–55% of alpine species, 31–51% of subalpine species and 19–46% of montane species lose more than 80% of their suitable habitat by 2070–2100. While our high‐resolution analyses consistently indicate marked levels of threat to cold‐adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.  相似文献   
128.
  • 1 For Trichoptera occurring in two sites of the Upper Rhône River (France) we examine: (i) relationships among species traits; (ii) habitat utilization of Trichoptera species; (iii) the relationship between species traits and habitat utilization; (iv) trends of species traits in the framework of spatial–temporal habitat variability to test predictions of the habitat templet concept; and (v) trends of species richness in the framework of spatial–temporal habitat variability to test predictions of the patch dynamics concept.
  • 2 Of the sixteen species traits selected, twelve have high correlation ratios for the seventy-five species used in this analysis; these traits are related to behavioural, morphological, or physiological aspects. Traits related to reproduction or life cycle have lower correlation ratios.
  • 3 An ordination by species traits separates the five main families into three groups: (i) Hydropsychidae and Polycentropodidae; (ii) Hydroptilidae; and (iii) Leptoceridae and Limnephilidae. An ordination of the habitat utilization of the species in ten habitats indicates that the Hydropsychidae occur preferentially in the main channel, Hydroptilidae, Polycentropodidae, and Limnephilidae occur in backwaters or oxbow lakes, and the Leptoceridae are ubiquitous.
  • 4 The Hydropsychidae exhibit a relationship between species traits and habitat utilization, i.e. they use similar habitat types with similar species traits. The species traits of the other four families are similar but their habitat utilization is quite different.
  • 5 The Hydropsychidae occur in lowest spatial–temporal variability habitats and Limnephilidae in the highest. Therefore, net spinners and filterers are characteristic of habitats with a low spatial–temporal variability, whereas shredders and case makers using plant material are characteristic of habitats with high spatial–temporal variability. The trends in species traits show little agreement with trends predicted from the river habitat templet.
  • 6 Trends of species richness in the framework of spatial and temporal variability do not follow the predictions of the patch dynamics concept because richness is similar in all superficial habitats. This implies that each habitat, in spite of large differences in their spatial and temporal variability, offers Trichoptera a similar but limited number of ecological niches.
  相似文献   
129.
130.
In some hole nesting passerine species, long‐term monitoring data are available for several geographically independent populations. Climate forcing can then be documented and predictions made on the scale of distribution ranges. Several demographic studies of Paridae report dramatic impacts of wintertime climatic factors. However, these studies were undertaken in populations located in the northern parts of the species' ranges. Studies on the survival of Paridae in their southern ranges are necessary in order to assess potential latitudinal variation in climate forcing on survival. Based on monitoring of individual adult blue tits (Parus caeruleus), the effects of climatic factors on annual survival were assessed in three distinct Mediterranean populations. In these regions, climatic conditions in early summer might be expected to have a strong impact because they can be extremely hot and dry and because at this time of year Paridae are subjected to intrinsic constraints that stem from energetically costly postbreeding moult, recovery from reproductive costs, and from population densities inflated by the new cohort of fledglings. The impact of climatic conditions in early summer was, thus, addressed in addition to that prevailing in winter. In order to consider a large number of local climatic variables while limiting statistical power loss, integrative indices of local climate were built using multivariate techniques. In addition, the NAO and three large‐scale factors that are closely linked with atmospheric and oceanic circulation in the intertropical zone were considered as potentially influential factors in winter and early summer. Relationships between blue tit survival and indices of local temperature and precipitation in winter and in early summer were detected. Adult survival also correlated with a large‐scale tropical index in early summer: rainfall in the Sahel. This is one of the first quantitative indications that fluctuations in summer climatic conditions explain a significant part of the temporal variation in adult survival in unconnected populations of a sedentary European vertebrate. Furthermore, the results support the hypothesis that summertime local climates in Western Europe are closely linked with atmospheric and oceanic circulation in the intertropical zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号