首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2255篇
  免费   81篇
  2336篇
  2018年   17篇
  2016年   20篇
  2015年   29篇
  2013年   51篇
  2012年   59篇
  2011年   75篇
  2010年   82篇
  2009年   103篇
  2008年   104篇
  2007年   116篇
  2006年   76篇
  2005年   64篇
  2004年   66篇
  2003年   36篇
  2002年   35篇
  2001年   28篇
  2000年   32篇
  1999年   43篇
  1998年   38篇
  1997年   36篇
  1996年   37篇
  1995年   19篇
  1994年   19篇
  1993年   31篇
  1992年   41篇
  1991年   44篇
  1990年   37篇
  1989年   47篇
  1988年   41篇
  1987年   43篇
  1986年   36篇
  1985年   33篇
  1984年   39篇
  1983年   29篇
  1982年   20篇
  1981年   24篇
  1979年   31篇
  1978年   35篇
  1977年   27篇
  1976年   21篇
  1975年   34篇
  1974年   32篇
  1973年   37篇
  1972年   57篇
  1971年   60篇
  1969年   25篇
  1968年   20篇
  1967年   16篇
  1966年   16篇
  1959年   16篇
排序方式: 共有2336条查询结果,搜索用时 15 毫秒
31.
A refracting lens is a key component of our image-forming camera eye; however, its evolutionary origin is unknown because precursor structures appear absent in nonvertebrates. The vertebrate betagamma-crystallin genes encode abundant structural proteins critical for the function of the lens. We show that the urochordate Ciona intestinalis, which split from the vertebrate lineage before the evolution of the lens, has a single gene coding for a single domain monomeric betagamma-crystallin. The crystal structure of Ciona betagamma-crystallin is very similar to that of a vertebrate betagamma-crystallin domain, except for paired, occupied calcium binding sites. The Ciona betagamma-crystallin is only expressed in the palps and in the otolith, the pigmented sister cell of the light-sensing ocellus. The Ciona betagamma-crystallin promoter region targeted expression to the visual system, including lens, in transgenic Xenopus tadpoles. We conclude that the vertebrate betagamma-crystallins evolved from a single domain protein already expressed in the neuroectoderm of the prevertebrate ancestor. The conservation of the regulatory hierarchy controlling betagamma-crystallin expression between organisms with and without a lens shows that the evolutionary origin of the lens was based on co-option of pre-existing regulatory circuits controlling the expression of a key structural gene in a primitive light-sensing system.  相似文献   
32.
Patterson  M.  Wolfe  A. K.  Fleming  P. A.  Bateman  P. W.  Martin  M. L.  Sherratt  E.  Warburton  N. M. 《Evolutionary ecology》2022,36(4):489-509
Evolutionary Ecology - As snakes are limbless, gape-limited predators, their skull is the main feeding structure involved in prey handling, manipulation and feeding. Ontogenetic changes in prey...  相似文献   
33.
Procollagen I is a trimer consisting of two proalpha1(I) chains and one proalpha 2(I) chain. In certain cases of mild osteogenesis imperfecta, abnormal proalpha1(I) chains are degraded very soon after synthesis. As a consequence, the cells produce excess proalpha2(I) chains, which cannot form trimers and are not secreted. The objective of this work was to determine the intracellular fate of unassociated proalpha2(I) chains. Mov13 mouse fibroblasts, which do not synthesize proalpha1(I) mRNA, but do produce proalpha2(I) mRNA, were incubated with radioactive amino acids using pulse-chase protocols, and proteins were analyzed by gel electrophoresis, autoradiography, and Western blotting. Mov13 cells produced proalpha2(I) chains that were degraded intracellularly within 30 min. Degradation was inhibited when cells were treated with brefeldin-A, which blocks transit from endoplasmic reticulum to Golgi. Fixed cells exposed to various immunofluorescence markers and imaged by confocal laser scanning microscopy showed that proalpha2(I) chains colocalized with Golgi and lysosome markers. Degradation was inhibited and chains were secreted when cells were treated with wortmannin, which blocks trafficking to lysosomes. These results demonstrate that unassociated proalpha2(I) chains leave the endoplasmic reticulum, transit the Golgi, and enter lysosomes where they are degraded.  相似文献   
34.
35.
Temperate forest soil organic carbon (C) represents a significant pool of terrestrial C that may be released to the atmosphere as CO2 with predicted changes in climate. To address potential feedbacks between climate change and terrestrial C turnover, we quantified forest soil C response to litter type and temperature change as a function of soil parent material. We collected soils from three conifer forests dominated by ponderosa pine (PP; Pinus ponderosa Laws.); white fir [WF; Abies concolor (Gord. and Glend.) Lindl.]; and red fir (RF; Abies magnifica A. Murr.) from each of three parent materials, granite (GR), basalt (BS), and andesite (AN) in the Sierra Nevada of California. Field soils were incubated at their mean annual soil temperature (MAST), with addition of native 13C‐labeled litter to characterize soil C mineralization under native climate conditions. Further, we incubated WF soils at PP MAST with 13C‐labeled PP litter, and RF soils at WF MAST with 13C‐labeled WF litter to simulate a migration of MAST and litter type, and associated change in litter quality, up‐elevation in response to predicted climate warming. Results indicated that total CO2 and percent of CO2 derived from soil C varied significantly by parent material, following the pattern of GR>BS>AN. Regression analyses indicated interactive control of C mineralization by litter type and soil minerals. Soils with high short‐range‐order (SRO) mineral content exhibited little response to varying litter type, whereas PP litter enriched in acid‐soluble components promoted a substantial increase of extant soil C mineralization in soils of low SRO mineral content. Climate change conditions increased soil C mineralization greater than 200% in WF forest soils. In contrast, little to no change in soil C mineralization was noted for the RF forest soils, suggesting an ecosystem‐specific climate change response. The climate change response varied by parent material, where AN soils exhibited minimal change and GR and BS soils mineralized substantially greater soil C. This study corroborates the varied response in soil C mineralization by parent material and highlights how the soil mineral assemblage and litter type may interact to control conifer forest soil C response to climate change.  相似文献   
36.
Electron microscopic examinations of Glugea hertwigi and Spraguea lophii spores indicated the presence of a single plasma membrane; however, this membrane remained in the spore during the discharge of the sporoplasm from the spore. Although discharged spores retained the old plasma membrane, the extruded sporoplasms acquired a new plasma membrane. In order to determine where the new plasma membrane came from, we used two fluorescent probes with membrane affinities. The markers were tested on unfired and discharged spores. The probe, N-phenyl-1-naphthylamine (NPN), labeled the polaroplast membrane in addition to the apolar groups in the posterior vacuoles of unfired spores. After spore discharge, NPN label disappeared from the spore ghosts except for a slight fluorescence on residual plasma membranes. Much of the NPN-labeled membrane reappeared after spore discharge on the outer envelope of discharged sporoplasms. The probe chlorotetracycline (CTC) labeled calcium-associated membranes of spore polaroplasts. During spore discharge, the CTC fluorescence shifted from the polaroplast organelle of unfired spores to the outer envelope of discharged sporoplasms. These results indicate that the polaroplast organelle may provide the new plasma membrane for discharged microsporidian sporoplasms.  相似文献   
37.
Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef‐building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long‐term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere–ocean general circulation models (GCMs) to the local conditions around representative coral reefs. Here, we conduct the first comprehensive global assessment of coral bleaching under climate change by adapting the NOAA Coral Reef Watch bleaching prediction method to the output of a low‐ and high‐climate sensitivity GCM. First, we develop and test algorithms for predicting mass coral bleaching with GCM‐resolution sea surface temperatures for thousands of coral reefs, using a global coral reef map and 1985–2002 bleaching prediction data. We then use the algorithms to determine the frequency of coral bleaching and required thermal adaptation by corals and their endosymbionts under two different emissions scenarios. The results indicate that bleaching could become an annual or biannual event for the vast majority of the world's coral reefs in the next 30–50 years without an increase in thermal tolerance of 0.2–1.0°C per decade. The geographic variability in required thermal adaptation found in each model and emissions scenario suggests that coral reefs in some regions, like Micronesia and western Polynesia, may be particularly vulnerable to climate change. Advances in modelling and monitoring will refine the forecast for individual reefs, but this assessment concludes that the global prognosis is unlikely to change without an accelerated effort to stabilize atmospheric greenhouse gas concentrations.  相似文献   
38.
1. Recent increases in phytoplankton biomass and the recurrence of cyanobacterial blooms in western Lake Erie, concomitant with a shift from a community dominated by zebra mussels (Dreissena polymorpha) to one dominated by quagga mussels (D. bugensis), led us to test for differences in ammonia‐nitrogen and phosphate‐phosphorus excretion rates of these two species of invasive molluscs. 2. We found significant differences in excretion rate both between size classes within a taxon and between taxa, with zebra mussels generally having greater nutrient excretion rates than quagga mussels. Combining measured excretion rates with measurements of mussel soft‐tissue dry weight and shell length, we developed nutrient excretion equations allowing estimation of nutrient excretion by dreissenids. 3. Comparing dreissenid ammonia and phosphate excretion with that of the crustacean zooplankton, we demonstrated that the mussels add to nitrogen and phosphorus remineralisation, shortening nitrogen and phosphorus turnover times, and, importantly, modify the nitrogen and phosphorus cycles in Lake Erie. The increased nutrient flux from dreissenids may facilitate phytoplankton growth and cyanobacterial blooms in well‐mixed and/or shallow areas of western Lake Erie.  相似文献   
39.
Very-broad-scale assessment of human impacts on river condition   总被引:2,自引:0,他引:2  
1. Management of whole rivers and river catchments requires a comprehensive set of information about river condition and use, both existing and historical, and the links between them at regional, state or national scales. This paper outlines a new approach to the assessment of river condition, using a small team was able to assess 210 000 km of rivers across more than 3 million km2 of Australia in little more than a year. 2. The approach was driven by a hierarchical model of river function, which assumed that broad‐scale catchment characteristics affect local hydrology, habitat features, water quality and, ultimately, aquatic biota. The model provided the basis for selecting important ecologically relevant features that indices should represent. For each reach of each river we derived a biological index and an environmental index based on measures quantifying catchment and hydrological condition, and habitat and water quality condition. Data came from existing state and national databases, satellite images, site measurements and process models. 3. All indices were calculated as deviation from a reference condition, were range‐standardised and were divided into equivalent bands of condition. Amalgamation of index components and of sub‐indices was determined by consideration of their ecological effects; for example, general degradation might be additive, but toxic effects of one component would override all others. 4. Several internal and external validation methods were employed, with the all‐important validation of the final assessments undertaken by comparison with a similar index based on locally measured data. 5. The environmental assessment classified 14% of reaches as largely unmodified, 67% as moderately modified and 19% as substantially modified by human impacts. The biological assessment based on site assessments and modelled data using invertebrates indicated that 70% of reaches were equivalent to reference condition and that 30% were significantly impaired. Catchment disturbance, elevated sediment and nutrient loads, and habitat degradation all contributed to these results. These impacts have all occurred during the last 200 years (post‐European settlement). 6. Partly as a result of the assessments of this study the Australian Government has begun to adopt a more environmentally sustainable approach to broad‐scale water management.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号