首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6251篇
  免费   714篇
  国内免费   3篇
  6968篇
  2021年   76篇
  2020年   53篇
  2019年   49篇
  2018年   60篇
  2016年   92篇
  2015年   182篇
  2014年   182篇
  2013年   245篇
  2012年   295篇
  2011年   272篇
  2010年   153篇
  2009年   131篇
  2008年   225篇
  2007年   229篇
  2006年   198篇
  2005年   191篇
  2004年   195篇
  2003年   164篇
  2002年   189篇
  2001年   159篇
  2000年   170篇
  1999年   155篇
  1998年   80篇
  1997年   87篇
  1996年   58篇
  1995年   71篇
  1994年   74篇
  1993年   80篇
  1992年   107篇
  1991年   135篇
  1990年   128篇
  1989年   141篇
  1988年   127篇
  1987年   130篇
  1986年   114篇
  1985年   115篇
  1984年   103篇
  1983年   87篇
  1982年   118篇
  1981年   119篇
  1980年   100篇
  1979年   108篇
  1978年   71篇
  1977年   64篇
  1976年   63篇
  1975年   62篇
  1974年   57篇
  1973年   57篇
  1972年   71篇
  1970年   53篇
排序方式: 共有6968条查询结果,搜索用时 0 毫秒
211.
α1-antitrypsin deficiency (ATD) predisposes patients to both loss-of-function (emphysema) and gain-of-function (liver cirrhosis) phenotypes depending on the type of mutation. Although the Z mutation (ATZ) is the most prevalent cause of ATD, >120 mutant alleles have been identified. In general, these mutations are classified as deficient (<20% normal plasma levels) or null (<1% normal levels) alleles. The deficient alleles, like ATZ, misfold in the ER where they accumulate as toxic monomers, oligomers and aggregates. Thus, deficient alleles may predispose to both gain- and loss-of-function phenotypes. Null variants, if translated, typically yield truncated proteins that are efficiently degraded after being transiently retained in the ER. Clinically, null alleles are only associated with the loss-of-function phenotype. We recently developed a C. elegans model of ATD in order to further elucidate the mechanisms of proteotoxicity (gain-of-function phenotype) induced by the aggregation-prone deficient allele, ATZ. The goal of this study was to use this C. elegans model to determine whether different types of deficient and null alleles, which differentially affect polymerization and secretion rates, correlated to any extent with proteotoxicity. Animals expressing the deficient alleles, Mmalton, Siiyama and S (ATS), showed overall toxicity comparable to that observed in patients. Interestingly, Siiyama expressing animals had smaller intracellular inclusions than ATZ yet appeared to have a greater negative effect on animal fitness. Surprisingly, the null mutants, although efficiently degraded, showed a relatively mild gain-of-function proteotoxic phenotype. However, since null variant proteins are degraded differently and do not appear to accumulate, their mechanism of proteotoxicity is likely to be different to that of polymerizing, deficient mutants. Taken together, these studies showed that C. elegans is an inexpensive tool to assess the proteotoxicity of different AT variants using a transgenic approach.  相似文献   
212.
A metabolic pathway, known as the mannitol cycle in fungi, has been identified as a new entity in the eulittoral mangrove red algaCaloglossa leprieurii (Montagne) J. Agardh. Three specific enzymes, mannitol-1-phosphate dehydrogenase (Mt1PDH; EC 1.1.1.17), mannitol-1-phosphatase (MtlPase; EC 3.1.3.22), mannitol dehydrogenase (MtDH; EC 1.1.1.67) and one nonspecific hexokinase (HK; EC 2.7.1.1) were determined and biochemically characterized in cell-free extracts. Mannitol-1-phosphate dehydrogenase showed activity maxima at pH 7.0 [fructose-6-phosphate (F6P) reduction] and pH 8.5 [oxidation of mannitol-1-phosphate (Mt1P)], and a very high specificity for both carbohydrate substrates. TheK m values were 1.4 mM for F6P, 0.09 mM for MOP, 0.020 mM for NADH and 0.023 mM for NAD+. For the dephosphorylation of MOP, MtlPase exhibited a pH optimum at 7.2, aK m value of 1.2 mM and a high requirement of Mg2+ for activation. Mannitol dehydrogenase had activity maxima at pH 7.0 (fructose reduction) and pH 9.8 (mannitol oxidation), and was less substrate-specific than Mt1PDH and MtlPase, i.e. it also catalyzed reactions in the oxidative direction with arabitol (64.9%), sorbitol (31%) and xylitol (24.8%). This enzyme showedK m values of 39 mM for fructose, 7.9 mM for mannitol, 0.14 mM for NADH and 0.075 mM for NAD+. For the non-specific HK, only theK m values for fructose (0.19 mM) and glucose (7.5 mM) were determined. The activities of the anabolic enzymes Mt1PDH and MtlPase were always at least two orders of magnitude higher than those of the degradative enzymes, indicating a net carbon flow towards a high intracellular mannitol pool. The function of mannitol metabolism inC. leprieurii as a biochemical adaptation to the environmental extremes in the mangrove habitat is discussed.Abbreviations F6P fructose-6-phosphate - HK hexokinase - Mt1P mannitol-1-phosphate - Mt1PDH mannitol-1-phosphate dehydrogenase - Mt1Pase mannitol-1-phosphatase - MtDH mannitol dehydrogenase  相似文献   
213.
The potential rates and control of aerobic root-associated carbon monoxide (CO) consumption were assessed by using excised plant roots from five common freshwater macrophytes. Kinetic analyses indicated that the maximum potential uptake velocities for CO consumption ranged from 0.4 to 2.7 μmol of CO g (dry weight)−1 h−1 for the five species. The observed rates were comparable to previously reported rates of root-associated methane uptake. The apparent half-saturation constants for CO consumption ranged from 50 to 370 nM CO; these values are considerably lower than the values obtained for methane uptake. The CO consumption rates reached maximum values at temperatures between 27 and 32°C, and there was a transition to CO production at ≥44°C, most likely as a result of thermochemical organic matter decomposition. Incubation of roots with organic substrates (e.g., 5 mM syringic acid, glucose, alanine, and acetate) dramatically reduced the rate of CO consumption, perhaps reflecting a shift in metabolism by facultative CO oxidizers. Based on responses to a suite of antibiotics, most of the CO consumption (about 90%) was due to eubacteria rather than fungi or other eucaryotes. Based on the results of acetylene inhibition experiments, methanotrophs and ammonia oxidizers were not active CO consumers.  相似文献   
214.
Meiotic features and fate of germ cells were studied using electron microscopy on surface spread spermatocytes and in situ tests for apoptosis on testicular tissues of normal boars and X-autosome translocation (X-AT) carrier boars. Histological sections of the translocation t(Xp+; 14q-) carrier boars showed accumulation of degenerating germ cells including binucleate and multinucleate cells, as well as pyknosis and nuclear fragmentation characteristic of apoptosis. Synaptonemal complex analysis of X-AT carrier boars revealed 19 bivalents including a large complex made up of the altered X (Xp+) and normal chromosome 14, and a smaller element representing the Y chromosome in synapsis with the derived chromosome 14 (14q-) in most (89.3%) of the germ cells. In situ tests for apoptotic DNA fragmentation revealed positive signals exclusively among early spermatocytes and degenerating germ cells. These findings and the absence of stages beyond pachytene suggest that the meiocytes are arrested at pachytene and eliminated through apoptotic process in spite of the complete synapsis displayed by the chromosomes involved in this translocation. Failure of meiotic progress in our X-AT carriers would appear to be the result of the disruption of gene sequence (or function) caused by the involvement of the X chromosome in this rearrangement, rather than the deleterious consequences of abnormal segregation anticipated in reciprocal translocation carriers. We hypothesize that this disruption could have affected the induction of stage-specific gene products in meiosis such as heat shock proteins and caused the excessive release of endonucleases normally produced by early prophase meiocytes, leading to their apoptosis in our X-autosome translocation carrier boars.  相似文献   
215.
Due to limited data available on the presence of antibiotic-resistant (ABR) bacteria in faeces of wild herbivores in South Africa, this study analysed resistance patterns for Escherichia coli isolates from wildebeest, zebra and giraffe in addition to pet and farm pig faeces. Total and faecal coliforms and E. coli were quantified in faecal matter using a most probable number (MPN) guideline procedure. Antibiotic resistance profiles against 12 selected antibiotics representing seven classes were determined for 30 randomly selected E. coli isolates from each animal using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disk diffusion procedure. While log10 MPN values per gram of animal faeces for total/faecal coliforms ranged from 4.51/4.11 to 5.70/5.50, the E. coli MPN values were in a range of 3.43–5.14. The proportion of ABR E. coli isolates ranged from 43% (giraffe) to 93% (zebra). About 47% of E. coli isolates from zebra faeces were categorized as multidrug-resistant (MDR), while for wildebeest and giraffe, no MDR isolates were detected. In comparison, 10% of E. coli isolates from pet pig and about 7% from farm pig faeces were categorized as MDR. Although most MDR isolates were resistant to at least one β-lactam antibiotic, only one MDR isolate from farm pig faeces was resistant to both norfloxacin and ciprofloxacin, the two fluoroquinolones tested. However, no resistance was detected to the tested carbapenems and tigecycline. The results of this study indicate that indigenous South African herbivores may serve as potential reservoirs and vectors for the dissemination of ABR E. coli strains.  相似文献   
216.
217.
In order to evaluate the role of inherited variation in the estrogen receptor (ESR1) gene in human breast cancer, we determined intronic sequences flanking each ESRI exon; identified multiple SNPs and length polymorphisms in the ESR1 coding sequence, splice junctions and regulatory regions; and genotyped families at high risk of breast cancer and population-based breast cancer patients and controls. Of 10 polymorphic sites in ESR1, four are synonymous SNPs, two are nonsynonymous SNPs and four are length polymorphisms; five are novel. No ESR1 polymorphisms were associated with breast cancer, either in the high-risk families or the case-control study. We therefore conclude that inherited genetic variation is not a mechanism by which the estrogen receptor is commonly involved in breast cancer development.  相似文献   
218.
219.
The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.  相似文献   
220.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号