首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1655篇
  免费   15篇
  2015年   9篇
  2014年   10篇
  2013年   64篇
  2012年   46篇
  2011年   65篇
  2010年   95篇
  2009年   75篇
  2008年   57篇
  2007年   83篇
  2006年   62篇
  2005年   61篇
  2004年   39篇
  2003年   28篇
  2002年   14篇
  2001年   20篇
  2000年   31篇
  1999年   22篇
  1998年   40篇
  1997年   62篇
  1996年   73篇
  1995年   40篇
  1994年   33篇
  1993年   35篇
  1992年   38篇
  1991年   33篇
  1990年   36篇
  1989年   37篇
  1988年   33篇
  1987年   22篇
  1986年   25篇
  1985年   27篇
  1984年   30篇
  1983年   20篇
  1982年   15篇
  1981年   20篇
  1980年   25篇
  1979年   29篇
  1978年   26篇
  1977年   18篇
  1976年   11篇
  1975年   18篇
  1974年   11篇
  1973年   18篇
  1972年   21篇
  1971年   33篇
  1969年   4篇
  1967年   5篇
  1959年   5篇
  1952年   3篇
  1951年   4篇
排序方式: 共有1670条查询结果,搜索用时 15 毫秒
221.
Floral structure of all putative families of Crossosomatales as suggested by molecular studies was comparatively studied. The seven comprise Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, and Strasburgeriaceae. The entire clade (1) is highly supported by floral structure, also the clades (in sequence of diminishing structural support): Ixerbaceae/Strasburgeriaceae (2), Geissolomataceae/Ixerbaceae/Strasburgeriaceae (3), Aphloiaceae/Geissolomataceae/Ixerbaceae/Strasburgeriaceae (4), and Crossosomataceae/Stachyuraceae/Staphyleaceae (5). Among the prominent floral features of Crossosomatales (1) are solitary flowers, presence of a floral cup, imbricate sepals with outermost smaller than inner, pollen grains with horizontally extended endoapertures, shortly stalked gynoecium, postgenitally united carpel tips forming a compitum, stigmatic papillae two‐ or more‐cellular, ovary locules tapering upwards, long integuments forming zigzag micropyles, cell clusters with bundles of long yellow crystals, mucilage cells, seeds with smooth, sclerified testa and without a differentiated tegmen. Clade (2) is characterized by large flowers, petals forming a tight, pointed cone in bud, stamens with long, stout filaments and sagittate anthers, streamlined, conical gynoecium, antitropous ovules, rudimentary aril, lignified, unicellular, T‐shaped hairs and idioblasts with striate mucilaginous cell walls. Clade (3) is characterized by alternisepalous carpels, punctiform stigma formed by postgenitally united and twisted carpel tips, synascidiate ovary, only one or two pendant ovules per carpel, nectary recesses between androecium and gynoecium. Clade (4) is characterized by pronounced ‘pollen buds’. Clade (5) is characterized by polygamous or functionally unisexual flowers, x‐shaped anthers, free and follicular carpels (not in Stachyuraceae). Crossosomataceae and Aphloiaceae, although not retrieved as a clade in molecular studies, share several special floral features: polystemonous androecium; basifixed anthers without a connective protrusion; stigma with two more or less decurrent crests; camplyotropous ovules and reniform seeds; simple, disc‐shaped nectaries and absence of hairs. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 147 , 1–46.  相似文献   
222.
The indehiscent fruitlets of the apparently basalmost extant angiosperm, Amborella trichopoda, have a pericarp that is differentiated into five zones, a thin one‐cell‐layered skin (exocarp), a thick fleshy zone of 25–35 cell layers (outer mesocarp), a thick, large‐celled sclerenchymatous zone (unlignified) of 6–18 cell layers (middle mesocarp), a single cell layer with thin‐walled (silicified?) cells (inner mesocarp), and a 2–4‐cell‐layered, small‐celled sclerenchymatous zone (unlignified) derived from the inner epidermis (endocarp). The border between inner and outer mesocarp is not even but the inner mesocarp forms a network of ridges and pits; the ridges support the vascular bundles, which are situated in the outer mesocarp. In accordance with previous observations by Bailey & Swamy, no ethereal oil cells were observed in the pericarp; however, lysigenous cavities as mentioned by these authors are also lacking; they seem to be an artefact caused by re‐expanding dried fruits. The seed coat is not sclerified. The fruitlets of Amborella differ from externally similar fruits or fruitlets in other basal angiosperms, such as Austrobaileyales or Laurales, in their histology. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 148 , 265–274.  相似文献   
223.
Floral morphology, anatomy and histology in the newly circumscribed order Celastrales, comprising Celastraceae, Parnassiaceae and Lepidobotryaceae are studied comparatively. Several genera of Celastraceae and Lepidobotrys (Lepidobotryaceae) were studied for the first time in this respect. Celastraceae are well supported as a group by floral structure (including genera that were in separate families in earlier classifications); they have dorsally bulged‐up locules (and thus apical septa) and contain oxalate druses in their floral tissues. The group of Celastraceae and Parnassiaceae is also well supported. They share completely syncarpous gynoecia with commissural stigmatic lobes (and strong concomitant development of the commissural vascular bundles but weak median carpel bundles), only weakly crassinucellar or incompletely tenuinucellar ovules with an endothelium, partly fringed sepals and petals, protandry in bisexual flowers combined with herkogamy by the movement of stamens and anther abscission, and stamens fused with the ovary. In contrast, Lepidobotryaceae are more distant from the other two families, sharing only a handful of features with Celastraceae (not Parnassiaceae), such as pseudohermaphroditic flowers, united stamen bases forming a collar around the gynoecium and seeds with a conspicuous aril. However, all three families together are also somewhat supported as a group and share petals that are not retarded in late floral bud development, 3‐carpellate gynoecia, ventral slits of carpels closed by long interlocking epidermal cells and pollen tube transmitting tissue encompassing several cell layers, both integuments usually more than two cell layers thick, and only weak or lacking floral indumentum. In some molecular analyses Celastrales form an unsupported clade with Malpighiales and Oxalidales. This association is supported by floral structure, especially between Celastrales and Malpighiales. Among Celastrales, Lepidobotryaceae especially share special features with Malpighiales, including a diplostemonous androecium with ten fertile stamens, epitropous ovules with an obturator and strong vascularization around the chalaza. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 129–194.  相似文献   
224.
1. Palaeolimnological data and limnological time‐series data are highly complementary. Sediment records extend time‐scales, integrate subannual variability and expand the range of sites that can be studied, but they suffer from taphonomic biases and occasionally from uncertain chronology. Observational time‐series data, on the other hand, are highly resolved but are very limited in extent both in space and time. 2. Palaeolimnological and observational data‐sets need to be combined in oligotrophication research to establish (i) the past and present status of lakes needed to identify reference conditions; (ii) changes in ecosystem state; (iii) responses to nutrient reduction; and (iv) the potential role of other factors (e.g. additional stressors, climate change) that might confound predictions of future state.  相似文献   
225.
Abstract: Unlike many regions in the world where wild pigs (Sus scrofa) are threatened, in Australia they are a significant invasive species. As such, the molecular ecology of feral pigs was investigated to understand their social and population genetic structure. Samples from 269 adult animals were collected over their distribution in southwestern Australia. Using 14 highly polymorphic microsatellite markers, we identified 7 inferred feral pig populations that had moderate heterozygosity (mean = 0.580) and displayed a high level of differentiation (mean RST = 0.180). In revealing the genetic structure of feral pigs, we detected anomalies in the putative origin of some individuals. Samples from these animals were collected from 2 main areas: recently colonized regions that were previously uninfested, and established feral pig populations, where animals from geographically isolated areas had been introduced. In the latter, these corresponded to areas that were in close proximity to public road access and towns. Given the large distances immigrants were found from their population of origin (from 50 to >400 km), the generally low levels of dispersal of southwest feral pigs, and the grouping and sex of these pigs, we suggest that these individuals have been deliberately and illegally translocated to supplement recreational hunting stocks. Additionally, we could not detect any genetic contribution in these feral pigs from domestic pig herds, suggesting that the deliberate release of domestic pigs to restock feral populations is relatively uncommon. Our molecular data allowed some inferences regarding the success or lack thereof of current management practices, and offered considerable insights into the dynamics of the feral pig populations and identification of “new” approaches that may allow for better control of this highly destructive species.  相似文献   
226.
Tundra‐atmosphere exchanges of carbon dioxide (CO2) and water vapour were measured near Daring Lake, Northwest Territories in the Canadian Low Arctic for 3 years, 2004–2006. The measurement period spanned late‐winter until the end of the growing period. Mean temperatures during the measurement period varied from about 2 °C less than historical average in 2004 and 2005 to 2 °C greater in 2006. Much of the added warmth in 2006 occurred at the beginning of the study, when snow melt occurred 3 weeks earlier than in the other years. Total precipitation in 2006 (163 mm) was more than double that of the driest year, 2004 (71 mm). The tundra was a net sink for CO2 carbon in all years. Mid‐summer net ecosystem exchange of CO2 (NEE) achieved maximum values of ?1.3 g C m?2 day?1 (2004) to ?1.8 g C m?2 day?1 (2006). Accumulated NEE values over the 109‐day period were ?32,?51 and ?61 g C m?2 in 2004, 2005 and 2006, respectively. The larger CO2 uptake in 2006 was attributed to the early spring coupled with warmer air and soil conditions. In 2004, CO2 uptake was limited by the shorter growing season and mid‐summer dryness, which likely reduced ecosystem productivity. Seasonal total evapotranspiration (ET) ranged from 130 mm (2004) to 181 mm (2006) and varied in accordance with the precipitation received and with the timing of snow melt. Maximum daily ET rates ranged from 2.3 to 2.7 mm day?1, occurring in mid July. Ecosystem water use efficiency (WUEeco) varied slightly between years, ranging from 2.2 in the driest year to 2.5 in the year with intermediate rainfall amounts. In the wettest year, increased soil evaporation may have contributed to a lower WUEeco (2.3). We speculate that most, if not all, of the modest growing season CO2 sink measured at this site could be lost due to fall and winter respiration leading to the tundra being a net CO2 source or CO2 neutral on an annual basis. However, this hypothesis is untested as yet.  相似文献   
227.
Timing is crucial in seasonal environments. Passerine birds typically use a combination of physiological mechanisms and environmental cues to ensure that breeding, moult and migration occur without major temporal overlap and under the most favourable conditions. However, late in the breeding season some individuals initiate additional clutches , whereas others initiate moult. Such alternative strategies are thought to reflect trade‐offs between reproductive benefits and timely investment in maintenance and survival. The degree of seasonal plasticity differs between species, depending on the mechanisms that govern their annual routine. Migrants are generally under pressure to complete breeding and moult before the autumn departure and often show little plasticity. We studied seasonal plasticity of breeding and moult schedules in the European Stonechat Saxicola rubicola. This species, an obligate short‐distance migrant in Central Europe, sometimes initiates late clutches after typically at least two earlier breeding attempts. Based on life‐history theory and on observations in captivity, which revealed photoperiodic regulation of breeding and moult, we predicted relatively little seasonal plasticity in Stonechats. We further predicted that reproductive gains of late breeders should be offset by reduced survival. These predictions were tested on long‐term field data, using Underhill–Zucchini models to estimate moult. Late breeding occurred in c. 40% of pairs and increased their reproductive success by a third. Both sexes modified moult timing but in different ways. Late breeding females postponed moult approximately until chick independence without compensating for delay by faster moult. Males started moult on time and overlapped it with breeding, associated with markedly slowed plumage change. Sex differences in moult score increased with lay date, but due to their respective modifications, both sexes delayed moult completion. Nonetheless, we could not detect any evidence for survival costs of late breeding. Breeding and moult of European Stonechats appear relatively flexible, despite migratory schedules and photoperiodic programs for seasonal timing. Individuals can modify seasonal behaviour in late summer, presumably depending on their condition, and may profit considerably from extended breeding.  相似文献   
228.
Three components of global change, elevated CO2, nitrogen addition, and decreased plant species richness (‘diversity’), increased the percent leaf area infected by fungi (pathogen load) for much to all of the plant community in one year of a factorial grassland experiment. Decreased plant diversity had the broadest effect, increasing pathogen load across the plant community. Decreased diversity increased pathogen load primarily by allowing remaining plant species to increase in abundance, facilitating spread of foliar fungal pathogens specific to each plant species. Changes in plant species composition also strongly influenced community pathogen load, with communities that lost less disease prone plant species increasing more in pathogen load. Elevated CO2 increased pathogen load of C3 grasses, perhaps by decreasing water stress, increasing leaf longevity, and increasing photosynthetic rate, all of which can promote foliar fungal disease. Decreased plant diversity further magnified the increase in C3 grass pathogen load under elevated CO2. Nitrogen addition increased pathogen load of C4 grasses by increasing foliar nitrogen concentration, which can enhance pathogen infection, growth, and reproduction. Because changes in foliar fungal pathogen load can strongly influence grassland ecosystem processes, our study suggests that increased pathogen load can be an important mechanism by which global change affects grassland ecosystems.  相似文献   
229.
Abstract Changes in plant abundance within a eucalypt savanna of north‐eastern Australia were studied using a manipulative fire experiment. Three fire regimes were compared between 1997 and 2001: (i) control, savanna burnt in the mid‐dry season (July) 1997 only; (ii) early burnt, savanna burnt in the mid‐dry season 1997 and early dry season (May) 1999; and (iii) late burnt, savanna burnt in the mid‐dry season 1997 and late dry season (October) 1999. Five annual surveys of permanent plots detected stability in the abundance of most species, irrespective of fire regime. However, a significant increase in the abundance of several subshrubs, ephemeral and twining perennial forbs, and grasses occurred in the first year after fire, particularly after late dry season fires. The abundance of these species declined toward prefire levels in the second year after fire. The dominant grass Heteropogon triticeus significantly declined in abundance with fire intervals of 4 years. The density of trees (>2 m tall) significantly increased in the absence of fire for 4 years, because of the growth of saplings; and the basal area of the dominant tree Corymbia clarksoniana significantly increased over the 5‐year study, irrespective of fire regime. Conservation management of these savannas will need to balance the role of regular fires in maintaining the diversity of herbaceous species with the requirement of fire intervals of at least 4‐years for allowing the growth of saplings >2 m in height. Whereas late dry season fires may cause some tree mortality, the use of occasional late fires may help maintain sustainable populations of many grasses and forbs.  相似文献   
230.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号