首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1649篇
  免费   12篇
  1661篇
  2015年   7篇
  2014年   10篇
  2013年   64篇
  2012年   45篇
  2011年   64篇
  2010年   95篇
  2009年   75篇
  2008年   56篇
  2007年   82篇
  2006年   62篇
  2005年   61篇
  2004年   40篇
  2003年   28篇
  2002年   14篇
  2001年   20篇
  2000年   31篇
  1999年   22篇
  1998年   40篇
  1997年   62篇
  1996年   73篇
  1995年   40篇
  1994年   33篇
  1993年   35篇
  1992年   38篇
  1991年   33篇
  1990年   36篇
  1989年   37篇
  1988年   33篇
  1987年   22篇
  1986年   25篇
  1985年   27篇
  1984年   30篇
  1983年   20篇
  1982年   15篇
  1981年   20篇
  1980年   25篇
  1979年   29篇
  1978年   26篇
  1977年   17篇
  1976年   11篇
  1975年   18篇
  1974年   11篇
  1973年   18篇
  1972年   21篇
  1971年   33篇
  1969年   4篇
  1967年   5篇
  1959年   5篇
  1952年   3篇
  1951年   4篇
排序方式: 共有1661条查询结果,搜索用时 0 毫秒
101.
Understanding the mechanisms by which climate change will affect animal populations is vital for adaptive management. Many studies have described changes in the timing of biological events, which can produce phenological mismatch. Direct effects on prey abundance might also be important, but have rarely been studied. We examine the likely importance of variation in prey abundance in driving the demographics of a European golden plover ( Pluvialis apricaria ) population at its southern range margin. Previous studies have correlated plover productivity with the abundance of their adult cranefly (Tipulidae) prey, and modelled the phenology of both plover breeding and cranefly emergence in relation to temperature. Our analyses demonstrate that abundance of adult craneflies is correlated with August temperature in the previous year. Correspondingly, changes in the golden plover population are negatively correlated with August temperature 2 years earlier. Predictions of annual productivity, based on temperature-mediated reductions in prey abundance, closely match observed trends. Modelled variation in annual productivity for a future scenario of increasing August temperatures predicts a significant risk of extinction of the golden plover population over the next 100 years, depending upon the magnitude of warming. Direct effects of climate warming upon cranefly populations may therefore cause northward range contractions of golden plovers, as predicted by climate envelope modelling. Craneflies are an important food source for many northern and upland birds, and our results are likely to have wide relevance to these other species. Research into the potential for habitat management to improve the resilience of cranefly populations to high temperature should be an urgent priority.  相似文献   
102.
103.
The Australian wolf spider genus Hoggicosa Roewer, 1960 with the type species Hoggicosa errans (Hogg, 1905) is revised to include ten species: Hoggicosa alfi sp. nov. ; Hoggicosa castanea (Hogg, 1905) comb. nov. (= Lycosa errans Hogg, 1905 syn. nov. ; = Lycosa perinflata Pulleine, 1922 syn. nov. ; = Lycosa skeeti Pulleine, 1922 syn. nov. ); Hoggicosa bicolor (McKay, 1973) comb. nov. ; Hoggicosa brennani sp. nov. ; Hoggicosa duracki (McKay, 1975) comb. nov. ; Hoggicosa forresti (McKay, 1973) comb. nov. ; Hoggicosa natashae sp. nov. ; Hoggicosa snelli (McKay, 1975) comb. nov. ; Hoggicosa storri (McKay, 1973) comb. nov. ; and Hoggicosa wolodymyri sp. nov. The Namibian Hoggicosa exigua Roewer, 1960 is transferred to Hogna, Hogna exigua (Roewer, 1960) comb. nov. A phylogenetic analysis including nine Hoggicosa species, 11 lycosine species from Australia and four from overseas, with Arctosa cinerea Fabricius, 1777 as outgroup, supported the monophyly of Hoggicosa, with a larger distance between the epigynum anterior pockets compared to the width of the posterior transverse part. The analysis found that an unusual sexual dimorphism for wolf spiders (females more colourful than males), evident in four species of Hoggicosa, has evolved multiple times. Hoggicosa are burrowing lycosids, several constructing doors from sand or debris, and are predominantly found in semi‐arid to arid regions of Australia. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 83–123.  相似文献   
104.
During the last half century or more, studies of diving physiologyand biochemistry made great progress in mechanistically explainingthe basic diving response of aquatic mammals and birds. Keycomponents of the diving response (apnea, bradycardia, peripheralvasoconstriction, redistribution of cardiac output) were foundin essentially all species analyzed and were generally takento be biological adaptations. By the mid 1970s, this approachto unravelling the diving response had run 'out of steam' andwas in conceptual stasis. The breakthrough which gave renewalto the field at this time was the development of microprocessorbased monitoring of diving animals in their natural environments,which led to a flurry of studies mostly confirming the basicoutlines of the diving response based upon laboratory studiesand firmly placing it into proper biological context, underliningits plasticity and species specificities. Now towards the endof the millenium, despite ever more detailed field monitoringof physiology, behaviour and ecology, mechanistic studies areagain approaching a point of diminishing returns. To avoid anotherconceptual stasis, what seems required are new initiatives whichwe anticipate may arise from two differing approaches. The firstis purely experimental, relying on magnetic resonance imaging(MRI) and spectroscopy (MRS) to expand the framework of theoriginal "diving response" concept. The second—evolutionarystudy of the diving response—is synthetic, linked to bothfield and laboratory studies. To date the evolution of the divingresponse has only been analyzed in pinnipeds and from thesestudies two kinds of patterns have emerged. (1) Some physiologicaland biochemical characters, required and used in diving animals,are highly conserved not only in pinnipeds but in all vertebrates;these traits are necessarily similar in all pinnipeds and includediving apnea, bradycardia, tissue specific hypoperfusion, andhypometabolism of hypoperfused tissues. (2) Another group offunctionally linked characters are more malleable and include(i) spleen mass, (ii) blood volume, and (iii) hemoglobin (Hb)pool size. Increases in any of these traits improve diving capacity.Assuming that conserved physiological function means conservedsequences in specific genes and their products (and that evolvingfunction requires changes in such sequences), it is possibleto rationalize both above trait categories in pinniped phytogeny.However, it is more difficult for molecular evolution theoryto explain how complex regulatory systems like those involvedin bradycardia and peripheral vasoconstriction remain the samethrough phylogenetic time than it is to explain physiologicalchange driven by positive natural selection.  相似文献   
105.
Pollen and orbicule morphology of 35 Dioscorea L. species is described based on observations with light microscopy, and scanning and transmission electron microscopy. Pollen and orbicule characters are critically evaluated and discussed in the context of existing hypotheses of systematic relationships within the genus. Pollen is mostly bisulcate (sometimes monosulcate) with a perforate, microreticulate or striate sexine. Our results indicate that pollen data may be significant at sectional rank. The close relationship between sections Asterotricha and Enantiophyllum proposed by Burkill and Ayensu is supported by pollen morphology as all species investigated share bisulcate, perforate pollen with small perforations and a high perforation density. Macromorphological differences between the two compound-leaved sections Botryosicyos and Lasiophyton are also supported by pollen morphology; pollens of these two sections have very different perforation patterns. Orbicules in Dioscorea are mostly spherical and possess a smooth or spinulose surface. The latter is often correlated with a striate sexine.  相似文献   
106.
1. Plant quality (bottom‐up effects) and natural enemies (top‐down effects) affect herbivore performance. Furthermore, plant quality can also influence the impact of natural enemies. 2. Lower plant quality through reduced irrigation increased the abundance of the cryptic species from the Bemisia tabaci complex [hereafter B. tabaci Middle East Asia Minor 1 (MEAM1)], but not its natural enemies on cotton. It was therefore predicted that lower plant quality would diminish the impact of natural enemies in regulating this herbivore. 3. Over three cotton seasons, plant quality was manipulated via differential irrigation and natural enemy abundance with insecticides. Life tables were used to evaluate the impact of these factors on mortality of immature B. tabaci (MEAM1) over nine generations. 4. Mortality of B. tabaci (MEAM1) was consistently affected by natural enemies but not by plant quality. This pattern was driven by high levels of sucking predation, which was the primary (key) factor associated with changes in immature mortality across all irrigation and natural enemy treatments. Dislodgement (chewing predation and weather) and parasitism contributed as key factors in some cases. Analyses also showed that elimination of sucking predation and dislodgement would have the greatest effect on overall mortality. 5. The top‐down effects of natural enemies had dominant effects on populations of B. tabaci (MEAM1) relative to the bottom‐up effects of plant quality. Effects were primarily due to native generalist arthropod predators and not more host‐specific aphelinid parasitoids. The findings of this study demonstrate the important role of arthropod predators in population suppression and validate the importance of conservation biological control in this system for effective pest control.  相似文献   
107.
Guard cell and epidermal/subsidiary cell protoplasts obtainedby enzymic digestion of peeled Commelina communis leaf epidermiswere separated and purified by discontinuous density gradientccntrifugation with media based on Percoll (Pharmacia Fine ChemicalsAB, Uppsala, Sweden). The cell types were recovered over 99.9%pure at yields exceeding 50% efficiency, and mesophyll contaminationcould be virtually eliminated when desired. Osmotic characteristicsof the protoplast types were evaluated and compared to in vivovalues, and the viability of the protoplasts, assessed usinga range of criteria, was found to be high. Purified Commelinaguard cell protoplasts were able to evolve O2 when illuminated,and this was substantially reduced in the presence of the inhibitorDCMU, indicating that they possess photosystem II activity.Specific advantages of this method of protoplast purification,and the potential uses of separate suspensions of guard cellsand epidermal/subsidiary cells in experiments on stomatal physiologyare discussed. Key words: Commelina communis, Protoplasts, Epidermis  相似文献   
108.
von Bitter, P.H. & Norby, R.D. 1994 10 15: Fossil epithelial cell imprints as indicators of conodont biology.
Size and growth characteristics of microsculpture polygons on the cup nodes of the bladelike Pa elements of the conodont Lochriea commutata support the hypothesis that they are epithelial cell imprints. They are ˜2–6 pn wide and ˜4–10 pn long and are the same size throughout growth of the element. The epithelial imprints increased in number with growth, either linearly or periodically; the latter possibility may be important for defining specific growth stages of conodont elements. The imprint location on the top of nodes suggests that the latter were tissue-covered and that the scissor-model of function applies to these bladelike Pa elements. The location of the imprints also reflects evolutionary history: a probable ancestor, L. cracoviensis (Belka), also lacks a platform and possesses well-developed microsculpture polygons on broad cup nodes. Finally, correlation between internal white matter and external microsculpture suggests that internal osteocytes may have supplied the external secreting cells with calcium phosphate from the inner storage bank. Conodont biology, fossil epithelial imprints, polygonal microsculpture, Carbonferous, Lochriea commutata .  相似文献   
109.
110.
The widely accepted phylogenctic position of Chondrichthyes as the sister group to all other living gnathostomes makes biomechanical analyses of this group of special significance for estimates of skull function in early jawed vertebrates. We review key findings of recent experimental research on the feeding mechanisms of living elasmobranchs with respect to our understanding of jaw depression mechanisms in gnathostome vertebrates. We introduce the possibility that the ancestral jaw depression mechanism in gnathostomes was mediated by the coracomandibularis muscle and that for hyoid depression by the coracohyoideus muscle, as in modern Chondrichthyes and possibly placoderms. This mechanism of jaw depression appears to have been replaced by the sternohyoideus (homologous to the coracohyoideus) coupling in Osteichthycs following the split of this lineage from Chondrichthyes. Concurrent with the replacement of the branchiomandibularis (homologous to the coracomandibularis) coupling by the sternohyoideus coupling as the dominant mechanism of jaw depression in Osteichthyes was the fusion and shift in attachment of the intcrhyoideus and intermandibularis muscles (producing the protractor hyoideus muscle, mistakenly refereed to as the geniohyoideus), which resulted in a more diversified role of the sternohyoideus coupling in Osteichthyes. The coracohyoideus coupling appears to have been already present in vertebrates where it functioned in hyoid depression, as in modern Chondrichthyes, before it acquired the additional role of jaw depression in Osteichthyes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号