首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  33篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1988年   1篇
  1959年   1篇
  1958年   3篇
  1957年   3篇
  1956年   2篇
  1955年   2篇
  1951年   1篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
1.
Analyses of the effects of extreme climate periods have been used as a tool to predict ecosystem functioning and processes in a warmer world. The winter half‐year 2006/2007 (w06/07) has been extremely warm and was estimated to be a half‐a‐millennium event in central Europe. Here we analyse the consequences of w06/07 for the temperatures, mixing dynamics, phenologies and population developments of algae and daphnids (thereafter w06/07 limnology) in a deep central European lake and investigate to what extent analysis of w06/07 limnology can really be used as a predictive tool regarding future warming. Different approaches were used to put the observations during w06/07 into context: (1) a comparison of w06/07 limnology with long‐term data, (2) a comparison of w06/07 limnology with that of the preceding year, and (3) modelling of temperature and mixing dynamics using numerical experiments. These analyses revealed that w06/07 limnology in Lake Constance was indeed very special as the lake did not mix below 60 m depth throughout winter. Because of this, anomalies of variables associated strongly with mixing behaviour, e.g., Schmidt stability and a measure for phosphorus upward mixing during winter exceeded several standard deviations the long‐term mean of these variables. However, our modelling results suggest that this extreme hydrodynamical behaviour was only partially due to w06/07 meteorology per se, but depended also strongly on the large difference in air temperature to the previous cold winter which resulted in complete mixing and considerable cooling of the water column. Furthermore, modelling results demonstrated that with respect to absolute water temperatures, the model ‘w06/07’ most likely underestimates the increase in water temperature in a warmer world as one warm winter is not sufficient to rise water temperatures in a deep lake up to those expected under a future climate.  相似文献   
2.
3.
4.
Division of labour improves fitness in animal societies. In ants, queens reproduce, whereas workers perform all other tasks. However, during independent colony founding, queens live as solitary insects and must be totipotent, especially in species where they need to forage. In many ants, solitary founding has been replaced by dependent founding, where queens are continuously helped by nestmate workers. Little is known about the details of this evolutionary transition. Mystrium rogeri from Madagascar and Mystrium camillae from Southeast Asia (subfamily Amblyoponinae) have winged queens, but three congeneric species from Madagascar reproduce with permanently wingless queens instead. We show that this 'ergatoid' caste has distinct body proportions in all three species, expressing a mixture of both queen and worker traits. Ergatoid queens have functional ovaries and spermatheca, and tiny wing rudiments. They can be as numerous as workers within a colony, but only a few mate and reproduce, whereas most behave as sterile helpers. The shape of their mandibles makes them unsuited for hunting and, together with a lack of metabolic reserves (i.e. in the form of wing muscles), this means that ergatoid queens cannot be solitary foundresses. In comparison with winged queens, ergatoid queens are less costly per capita and they experience lower mortality. They remain in their natal colonies where they can either reproduce or function as helpers, making them a 'multi-purpose' caste. Within the Amblyoponinae, ergatoid queens replace winged queens in Onychomyrmex as well. However, in this genus, ergatoid queens are 'sole-purpose', few are produced each year and they reproduce but do not work. Hence, different types of ergatoid queens evolved to replace winged queens in ants.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 198–207.  相似文献   
5.
1. Shallow lakes may switch from a state dominated by submerged macrophytes to a phytoplankton‐dominated state when a critical nutrient concentration is exceeded. We explore how climate change may affect this critical nutrient concentration by linking a graphical model to data from 83 lakes along a large climate gradient in South America. 2. The data indicate that in warmer climates, submerged macrophytes may tolerate more underwater shade than in cooler lakes. By contrast, the relationship between phytoplankton biomass [approximated by chlorophyll‐a (chl‐a) or biovolume] and nutrient concentrations did not change consistently along the climate gradient. In warmer climates, the correlation between phytoplankton biomass and nutrient concentrations was overall weak, especially at low total phosphorus (TP) concentrations where the chl‐a/ TP ratio could be either low or high. 3. Although the enhanced shade tolerance of submerged plants in warmer lakes might promote the stability of their dominance, the potentially high phytoplankton biomass at low nutrient concentrations suggests an overall low predictability of climate effects. 4. We found that near‐bottom oxygen concentrations are lower in warm lakes than in cooler lakes, implying that anoxic P release from eutrophic sediment in warm lakes likely causes higher TP concentrations in the water column. Subsequently, this may lead to a higher phytoplankton biomass in warmer lakes than in cooler lakes with similar external nutrient loadings. 5. Our results indicate that climate effects on the competitive balance between submerged macrophytes and phytoplankton are not straightforward.  相似文献   
6.
The decoupling of trophic interactions is potentially one of the most severe consequences of climate warming. In lakes and oceans the timing of phytoplankton blooms affects competition within the plankton community as well as food–web interactions with zooplankton and fish. Using Upper Lake Constance as an example, we present a model‐based analysis that predicts that in a future warmer climate, the onset of the spring phytoplankton bloom will occur earlier in the year than it does at present. This is a result of the earlier occurrence of the transition from strong to weak vertical mixing in spring, and of the associated earlier onset of stratification. According to our simulations a shift in the timing of phytoplankton growth resulting from a consistently warmer climate will exceed that resulting from a single unusually warm year. The numerical simulations are complemented by a statistical analysis of long‐term data from Upper Lake Constance which demonstrates that oligotrophication has a negligible effect on the timing of phytoplankton growth in spring and that an early onset of the spring phytoplankton bloom is associated with high air temperatures and low wind speeds.  相似文献   
7.
1. Experimental studies have indicated in freshwater ecosystems that a shift in dominance from submerged to free‐floating macrophytes may occur with climate change because of increased water surface temperatures and eutrophication. Field evidence is, however, rare. 2. Here, we analysed long‐term (26 years) dynamics of macrophyte cover in Dutch ditches in relation to Dutch weather variables and the North Atlantic Oscillation (NAO) winter index. The latter appears to be a good proxy for Dutch weather conditions. 3. Cover of both free‐floating macrophytes and evergreen overwintering submerged macrophytes was positively related to mild winters (positive NAO winter index). On the other hand, high cover of submerged macrophytes that die back in winter coincided with cold winters (negative NAO winter index). Our results therefore suggest that the effect of weather on macrophyte species depends strongly on their overwintering strategy. 4. The positive relation of free‐floating macrophytes with the NAO winter index was significantly stronger in ditches in organic soil than in those in inorganic soil. This may be because of increased nutrient loading associated with increased decomposition of organic matter and increased run‐off to these ditches during mild wet winters. 5. Our results suggest that mild winters in a changing climate may cause submerged macrophytes with an evergreen overwintering strategy and free‐floating macrophytes to outcompete submerged macrophytes that die back in winter.  相似文献   
8.
The free polyamine content of flag leaves, peduncles, rachis,glumes, and grains of wheat (Triticum aestivum L., cv. Castell)plants, ripening under field conditions, has been investigatedduring three consecutive growing seasons. Putrescine was quantitativelythe most important of all polyamines detected in these organs.Concentrations were highest in the grains, glumes and flag leaves.No correlation was found between polyamine content and the onsetof senescence of flag leaves and other organs. Excised primaryleaves, however, showed a decrease in polyamine content in thedark and also in light/dark cycles, but in the latter case onlyafter an initial increase. Sink removal of otherwise intactwheat plants caused an accumulation of putrescine in flag leavesat the later stages of senescence, whereas removal of all otherleaves was without any significant effect. Putrescine was alsorecovered in phloem-exudate samples collected throughout theperiod of grain development. In both grains and glumes, peakconcentrations of polyamines were found early during seed development. Key words: Triticum aestivum, polyamines, ripening, senescence  相似文献   
9.
10.
Floral transition mutants in Arabidopsis   总被引:3,自引:0,他引:3  
An inventory of genetic differences in flowering time in Arabidopsis is presented and discussed. Many genes influence the transition to flowering in a quantitative way. Two groups of mutants and natural variants can be distinguished: those that are responsive to environmental factors and those that are less responsive or unresponsive. It is possible that all late/early-flowering mutants isolated to date carry a mutation with an effect, either promotive or repressive, on a floral repressor. The interaction between light perception and flowering has been studied by analysis of phytochrome- and cryptochrome-deficient mutants, which showed that phyA and probably also cryptochrome have a promotive role in flowering, whereas phyB and other stable phytochromes have an inhibitory role. A circadian rhythm is important in establishing daylength sensitivity, as was shown by the phenotype of the elf 3 mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号