首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   55篇
  2017年   2篇
  2016年   3篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   6篇
  2002年   6篇
  2000年   7篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   7篇
  1986年   3篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   8篇
  1980年   6篇
  1979年   10篇
  1978年   12篇
  1977年   7篇
  1976年   4篇
  1975年   11篇
  1974年   7篇
  1973年   7篇
  1972年   7篇
  1971年   4篇
  1970年   5篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
  1966年   3篇
  1928年   1篇
排序方式: 共有255条查询结果,搜索用时 992 毫秒
11.
12.
13.
Extracellular cutinase induced by cutin hydrolysate in glucose-grown Fusarium solani f. pisi was isolated in electrophoretically homogeneous form. This enzyme was similar to cutinase I generated by cutin-grown cells in its catalytic properties such as pH optimum, substrate specificity, and inactivation by “active serine”-directed reagents. Its molecular weight was 26,300 and this enzyme had a much larger content of serine and threonine residues than that found in cutinase from the cutin-grown cells. The hydrolysate-induced enzyme was a glycoprotein containing 6% carbohydrates. Alkaline NaB3H4 treatment of the protein generated labeled protein and labeled carbohydrates. Analyses of the hydrolysates of these labeled products showed that alanine, α-aminobutyrate, phenylalanine, and tyrosine in the protein were labeled strongly suggesting that serine, threonine, β-hydroxyphenylalanine, and β-hydroxytyrosine were involved in O-glycosidic linkages in this protein. The protein hydrolysate also contained labeled gulonic acid, suggesting that d-glucuronic acid was attached to the protein via a base stable linkage, presumably an amide linkage at the N-terminus. The labeled reduced carbohydrates were identified by ion-exchange, thin-layer, gas-liquid, and high-performance liquid chromatographic techniques as mannitol, arabitol, gulonic acid, and 2-aminosorbitol. Thus mannose, arabinose, glucuronic acid, and glucosamine (possibly N-acetylated) were attached O-glycosidically to the hydroxyamino acids. Induction of cutinase by cutin hydrolysate in the presence of tritiated phenylalanine gave labeled cutinase. Cleavage of the O-glycosidically attached carbohydrates by anhydrous HF, followed by enzymatic hydrolysis of the labeled protein, gave rise to labeled amino acids, which upon analysis with an amino acid analyzer revealed four radioactive components. Two of them were identified as phenylalanine and tyrosine, while the other two cochromatographed with authentic β-hydroxyphenylalanine and β-hydroxytyrosine not only by the amino acid analyzer but also upon thin-layer chromatography. These results constitute the first direct evidence for the presence of the novel β-hydroxyaromatic amino acids in a protein.  相似文献   
14.
omega-Hydroxylation of fatty acids, which is a key reaction in the biosynthesis of cutin and suberin, has been demonstrated for the first time in a cell-free preparation from a higher plant. A crude microsomal fraction (105,000g pellet) from germinating embryonic shoots of Vicia faba catalyzed the conversion of palmitic acid to omega-hydroxypalmitic acid. As the crude cell-free preparation also catalyzes the formation of other hydroxy acids such as alpha- and beta-hydroxy acids, the omega-hydroxylation product was identified by gas chromatography on a polyester column and reverse phase, high performance liquid chromatography, two techniques which were shown to resolve the positional isomers. Gas chromatographic analysis of the dicarboxylic acid obtained by CrO(3) oxidation of the enzymic product also confirmed the identity of the enzymic omega-hydroxylation product. This enzymic hydroxylation required O(2) and NADPH, but substitution of NADH resulted in nearly half the reaction rate obtained with NADPH. Maximal rates of omega-hydroxylation occurred at pH 8 and the rate increased in a sigmoidal manner with increasing concentrations of palmitic acid. This omega-hydroxylation was inhibited by the classical mixed function oxidase inhibitors such as metal chelators (o-phenanthroline, 8-hydroxyquinoline, and alpha,alpha-dipyridyl), NaN(3) and thiol reagents (N-ethylmaleimide and p-chloromercuribenzoate). As expected of a hydroxylase, involving cytochrome P(450), the present omega-hydroxylase was inhibited by CO and this enzyme system showed unusually high sensitivity to this inhibition; 10% CO caused inhibition and 30% CO completely inhibited the reaction. Another unusual feature was that the inhibition caused by any level of CO could not be reversed by light (420-460 nm).  相似文献   
15.
Rabbit antibody to cutinase-I, isolated from Fusarium solani f. pisi, was conjugated to ferritin. With this ferritin-conjugated antibody it was shown that germinating spores of this fungus excreted cutinase during the penetration of the host pisum sativum. This result constitutes the most specific and strongest evidence for an enzymic penetration of a plant cuticle by a pathogen during infection.  相似文献   
16.
During the mating season the female mallards produce sex pheromones, diesters of 3-hydroxy fatty acids, in their uropygial glands. Subcellular fractionation by sucrose and Nycodenz density gradient centrifugations and electron microscopic examination of the fractions showed that diesters of 3-hydroxy acids and the enzymes that catalyze the formation and esterification of the 3-hydroxy fatty acids are located in the catalase-containing fractions, probably peroxisomes, whereas monoester synthesizing activities are located in the endoplasmic reticulum. Fatty acyl-CoA reductase that would provide fatty alcohol needed for the synthesis of monoester and diester waxes was found both in the peroxisomal and endoplasmic reticulum fraction. Upon daily intramuscular injection of estradiol into the females in the nonmating season, the short chain monoester waxes of the uropygial glands were replaced by long chain monoester waxes, and subsequently the monoester waxes were replaced by diester waxes. Injection of thyroxine with estradiol hastened the induction of the compositional changes including diester synthesis. Similar changes, including the synthesis of the female pheromones, were induced in the uropygial glands by the hormone treatment of males that do not normally produce diesters at any time during their life cycle. The structure and composition of the diesters induced by hormone treatment of both males and females were identical to those of the female pheromones produced during their mating season. Electron microscopic examination of diaminobenzidine-treated glands showed that peroxisomes proliferated in the gland of the females in the mating season and in the estradiol-treated males that produce the diesters.  相似文献   
17.
18.
Malonyl-CoA decarboxylase from the uropygial gland of goose decarboxylated (R,S)-methylmalonyl-CoA at a slow rate and introduced 3H from [3H]2O into the resulting propionyl-CoA. Carboxylation of this labeled propionyl-CoA by propionyl-CoA carboxylase from pig heart and acetyl-CoA carboxylase from the uropygial gland completely removed 3H. Repeated treatment of (R,S)-[methyl-14C]methylmalonyl-CoA with the decarboxylase converted 50% of the substrate into propionyl-CoA, whereas (S)-methylmalonyl-CoA, generated by both carboxylases, was completely decarboxylated. Radioactive (R)- (S), and (R,S)-methylmalonyl-CoA were equally incorporated into fatty acids by fatty acid synthetase from the uropygial gland. The residual methylmalonyl-CoA remaining after fatty acid synthetase reaction on (R,S)-methylmalonyl-CoA was also racemic. These results show that: (a) the decarboxylase is stereospecific, (b) replacement of the carboxyl group by hydrogen occurs with retention of configuration, (c) acetyl-CoA carboxylase of the uropygial gland generates (S)-methylmalonyl-CoA from propionyl-CoA, and (d) fatty acid synthetase is not stereospecific for methylmalonyl-CoA.  相似文献   
19.
20.
In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号