首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1188篇
  免费   98篇
  国内免费   1篇
  2022年   6篇
  2021年   16篇
  2020年   11篇
  2019年   13篇
  2018年   19篇
  2017年   23篇
  2016年   24篇
  2015年   51篇
  2014年   52篇
  2013年   86篇
  2012年   61篇
  2011年   57篇
  2010年   41篇
  2009年   40篇
  2008年   58篇
  2007年   57篇
  2006年   39篇
  2005年   49篇
  2004年   58篇
  2003年   34篇
  2002年   24篇
  2001年   29篇
  2000年   25篇
  1999年   20篇
  1998年   13篇
  1997年   16篇
  1996年   12篇
  1995年   14篇
  1994年   7篇
  1993年   7篇
  1992年   24篇
  1991年   24篇
  1990年   26篇
  1989年   22篇
  1988年   15篇
  1987年   11篇
  1986年   15篇
  1985年   16篇
  1984年   10篇
  1983年   12篇
  1982年   7篇
  1981年   6篇
  1980年   14篇
  1979年   9篇
  1978年   7篇
  1977年   8篇
  1975年   7篇
  1973年   8篇
  1970年   6篇
  1943年   5篇
排序方式: 共有1287条查询结果,搜索用时 109 毫秒
991.
The asialoglycoprotein receptor (ASGP-R) is an abundant, carbohydrate-specific, endocytic receptor expressed by parenchymal cells of the liver. We recently demonstrated that the ASGP-R mediates the clearance of glycoproteins bearing Siaα2,6GalNAc as well as those bearing terminal Gal or GalNAc. We now report that glycoproteins such as haptoglobin, serum amyloid protein (SAP), and carboxylesterase that bear oligosaccharides with terminal Siaα2,6Gal are elevated in the plasma of ASGP-R-deficient mice. Because of their abundance in plasma, glycoproteins bearing terminal Siaα2,6Gal will saturate the ASGP-R and compete with each other on the basis of their relative affinities for the ASGP-R and their relative abundance. We propose that the ASGP-R mediates the clearance of glycoproteins that bear oligosaccharides terminating with Siaα2,6Gal and thereby helps maintain the relative concentrations of these glycoproteins in the blood.The asialoglycoprotein receptor (ASGP-R)3 was initially identified and characterized by Ashwell and co-workers (1, 2) on the basis of its ability to rapidly remove glycoproteins bearing oligosaccharides terminating with β1,4-linked Gal from the circulation. The ASGP-R has been extensively characterized since its initial discovery; however, its biologic function in vivo has remained unclear. This endocytic receptor is highly abundant with 500,000 receptors expressed at the plasma membrane of hepatocytes (35) and is rapidly internalized (3, 6). The abundance of the ASGP-R and its rapid rate of internalization in combination with the large number of hepatocytes that are present in the liver, 1.35 × 108/g of liver (7, 8), results in an enormous potential capacity to remove glycoproteins from the circulation. Until recently, mice that have had either subunit of the ASGP-R ablated, subunit 1 ASGP-R1(-/-) or subunit 2 ASGP-R2(-/-), have not been reported to have altered levels of circulating glycoproteins in their blood or to have a physiologic phenotype (9, 10). However, Grewal et al. (11) have reported that the ASGP-R plays a role in von Willebrand factor homeostasis and promotes thrombocytopenia during Steptococcus pneumoniae sepsis by removing platelets that have had their surface sialic acid removed by the bacterial neuraminidase.We recently established that glycoproteins bearing Asn-linked oligosaccharides terminating with the sequence Siaα2,6GalNAcβ1,4GlcNAc are recognized by the ASGP-R and rapidly removed from the blood (12, 13). Glycoproteins bearing terminal Siaα2,6GalNAcβ1,4GlcNAc are the first examples of endogenous glycoproteins that can be recognized by the ASGP-R without further modification; i.e. removal of terminal Sia. Glycoproteins bearing these structures, for example the prolactin-like proteins (14), glycodelin (15), urokinase (16), and glycoprotein hormones (17), are not highly abundant, suggesting that the ASGP-R recognizes and clears additional more abundant glycoproteins. The most likely candidates are glycoproteins bearing Asn-linked oligosaccharides that terminate with the sequence Siaα2,6Galβ1, 4GlcNAc. We have reported that the ASGP-R recognizes these structures with an avidity that is in the micromolar range (13). The avidity of the ASGP-R for structures terminating with Siaα2,6Galβ1,4GlcNAc is predicted to be sufficient to mediate binding and clearance of glycoproteins bearing structures terminating with Siaα2,6Galβ1,4GlcNAc from the blood. This concept is supported by indications that neo-glycoproteins bearing structures terminating with Siaα2,6Galβ1,4GlcNAc are removed from the blood at a faster rate than those bearing Siaα2,3Galβ1,4GlcNAc (18). Slow clearance of glycoproteins bearing Siaα2,6Galβ1,4GlcNAc, however, hampers accurate measurement of their half-lives by injection of radiolabeled ligands.We now report that multiple glycoproteins bearing oligosaccharides that terminate with Siaα2,6Galβ1,4GlcNAc are elevated in the plasma of ASGP-R-deficient ASGP-R2(-/-) mice as compared with wild-type (Wt) mice. The elevation of multiple glycoproteins bearing terminal Siaα2,6Galβ1,4GlcNAc supports our proposal that the ASGP-R accounts for the clearance of these glycoproteins. This previously undiscerned role of the ASGP-R now allows us to develop a model of how this receptor may contribute to the regulation of the concentration of many different glycoproteins in the blood.  相似文献   
992.
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Aβ), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Aβ aggregation may not only be the consequence of excitotoxicity, aberrant Ca2+ signals, and proinflammatory cytokines such as TNF-α, but may also promote these pathological effectors. At the molecular level, insulin resistance and Aβ disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.  相似文献   
993.

Background

Proteomic profiling is a rapidly developing technology that may enable early disease screening and diagnosis. Surface-enhanced laser desorption ionization–time of flight mass spectrometry (SELDI-TOF MS) has demonstrated promising results in screening and early detection of many diseases. In particular, it has emerged as a high-throughput tool for detection and differentiation of several cancer types. This review aims to appraise published data on the impact of SELDI-TOF MS in breast cancer.

Methods

A systematic literature search between 1965 and 2009 was conducted using the PubMed, EMBASE, and Cochrane Library databases. Studies covering different aspects of breast cancer proteomic profiling using SELDI-TOF MS technology were critically reviewed by researchers and specialists in the field.

Results

Fourteen key studies involving breast cancer biomarker discovery using SELDI-TOF MS proteomic profiling were identified. The studies differed in their inclusion and exclusion criteria, biologic samples, preparation protocols, arrays used, and analytical settings. Taken together, the numerous studies suggest that SELDI-TOF MS methodology may be used as a fast and robust approach to study the breast cancer proteome and enable the analysis of the correlations between proteomic expression patterns and breast cancer.

Conclusion

SELDI-TOF MS is a promising high-throughput technology with potential applications in breast cancer screening, detection, and prognostication. Further studies are needed to resolve current limitations and facilitate clinical utility.  相似文献   
994.
995.
Molluscs of the genus Conus (cone shells) are carnivorous, feeding on marine worms, small fish and other marine molluscs. They capture their prey by injecting venom containing hundreds of neurally active peptide components. These peptides are classed as conotoxins and consist of small disulfide-bonded peptides exhibiting a high degree of post-translational modifications (PTMs). The functional roles of these modifications remain largely unknown. Two of the most frequently observed modifications are γ-carboxylation of glutamate and hydroxylation of proline (Buczek et al. Cell Mol Life Sci 62:3067, 2005). Vc1.1 is an α-conotoxin from Conus victoriae (Sandall et al. Biochemistry 42(22):6904–6911, 2003) and the only form of this peptide which has been detected in the venom is the γ-glutamate and hydroxyproline (Vc1.1.P6O:E14Gla) version of the molecule (Jakubowski et al. Toxicon 47(6):688–699, 2006). In order to investigate the role of PTMs, we did mass spectral profiling of the venom duct of C. victoriae looking at changes in mass and the number of peptides detected. We synthesised a number of predicted Vc1.1-PTM peptides together with the three possible disulfide isoforms of Vc1.1 and assessed the possible functional role of the PTM conopeptides by measuring the in vitro activity at the cognate neuronal nicotinic acetylcholine receptors (nAChRs). In addition we looked for their presence Vc1.1 venom by mass spectrometry and by this approach we were able to detect unmodified Vc1.1 in C. victoriae venom for the first time.  相似文献   
996.
The Beckwith-Wiedemann syndrome (BWS) is a pediatric overgrowth syndrome with a variable clinical appearance. The phenotype normalizes with age but the diagnosis of BWS is important as syndrome-specific complications may develop, in particular as a result of a 400-fold increased risk of patients developing certain tumor entities, predominantly nephroblastomas (Wilms’ tumors) and hepatoblastomas, within the first years of life. BWS displays a clinical overlap with other syndromes so that an unambiguous molecular diagnostic is required for risk assessment and appropriate therapy. At the molecular level BWS is associated with the chromosomal region 11p15.5, where two clusters with imprinted genes are located. In patients both genetic mutations and in most cases aberrant DNA methylation can be observed, which pathogenically affect the gene dosage of functionally available monoallelically expressed 11p15.5 genes. Currently only a very incomplete genotype-phenotype correlation exists for BWS. Current research projects provide insights in the molecular etiopathogenesis of the syndrome by identifying interacting partners which modify the epigenetic regulation of imprinted 11p15.5-genes.  相似文献   
997.
The p53 gene super family consists of three members; TP53, TP63 and TP73, encoding proteins p53, p63 and p73. Whilst p63 appears to have an essential role in embryonic development with a less clear role in carcinogenesis, irregularities in p53 and p73 signalling are implicated in tumour formation. As such, p53 is a tumour suppressor which is mutated in over 50% cancers and p73 was recently formally classified as a tumour suppressor based on data showing p73 deficient mice generate spontaneous tumours similar to those observed in p53 null mice. Dysregulation of both p53 and p73 has been correlated with cancer progression in many cell types and although mutation of these genes is often observed, some form of p53/p73 deregulation likely occurs in all tumour cells. The discovery that complementary micro RNAs (miRNAs) are able to target both of these genes provides a potential new means of perturbing p53/p73 signalling networks in cancer cells. Here we summarise the current literature regarding the involvement of miRNAs in the modulation of p53 family proteins and cancer development and detail the use of in silico methods to reveal key miRNA targets.  相似文献   
998.
Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.  相似文献   
999.

Background

PABA/NO is a diazeniumdiolate that acts as a direct nitrogen monoxide (NO) donor and is in development as an anticancer drug. Its mechanism of action and effect on cells is not yet fully understood.

Methodology/Principal Findings

We used HPLC and mass spectrometry to identify a primary nitroaromatic glutathione metabolite of PABA/NO and used fluorescent assays to characterize drug effects on calcium and NO homeostasis, relating these to endothelial nitric oxide synthase (eNOS) activity. Unexpectedly, the glutathione conjugate was found to be a competitive inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) presumably at the same site as thapsigargin, increasing intracellular Ca2+ release and causing auto-regulation of eNOS through S-glutathionylation.

Conclusions/Significance

The initial direct release of NO after PABA/NO was followed by an eNOS-mediated generation of NO as a consequence of drug-induced increase in Ca2+ flux and calmodulin (CaM) activation. PABA/NO has a unique dual mechanism of action with direct intracellular NO generation combined with metabolite driven regulation of eNOS activation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号