首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   9篇
  111篇
  2022年   1篇
  2021年   4篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   3篇
  2011年   9篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1975年   1篇
  1974年   2篇
  1969年   1篇
  1968年   2篇
  1964年   1篇
  1963年   1篇
  1961年   2篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
51.
52.
On micropolar fluid model for blood flow through narrow tubes   总被引:1,自引:0,他引:1  
  相似文献   
53.
Despite abundant evidence that water transfer from soil to xylem occurs along a pathway regulated by aquaporins (AQPs) water entry is still modeled using principles of ordinary passive diffusion. Problems with this model have been known for some time and include variable intrinsic properties of conductivity Lp, changing reflection coefficients, σ, and an inability to accurately resolve osmotic differentials between the soil and xylem. Here we propose a model of water entry based on principles of facilitated passive diffusion and following Michaelis-Menten formalism. If one accepts that water entry is controlled, at least in part, by AQPs, then a model of ordinary passive diffusion is precluded, as it does not allow for facilitation kinetics. By contrast, recognition of facilitated water entry through protein channels could explain shortcomings of ordinary passive diffusion, such as diurnal variability in conductivity which we have recently shown is directly correlated to diurnal changes in PsPIP2-1 mRNA levels in Pisum sativum.Key Words: aquaporins, root water entry, facilitated passive diffusion, simple passive diffusion, biophysical models  相似文献   
54.
Hormonally regulated programmed cell death in barley aleurone cells   总被引:13,自引:0,他引:13  
PC Bethke  JE Lonsdale  A Fath    RL Jones 《The Plant cell》1999,11(6):1033-1046
Cell death was studied in barley (cv Himalaya) aleurone cells treated with abscisic acid and gibberellin. Aleurone protoplasts incubated in abscisic acid remained viable in culture for at least 3 weeks, but exposure to gibberellin initiated a series of events that resulted in death. Between 4 and 8 days after incubation in gibberellin, >70% of all protoplasts died. Death, which occurred after cells became highly vacuolated, was manifest by an abrupt loss of plasma membrane integrity followed by rapid shrinkage of the cell corpse. Hydrolysis of DNA began before death and occurred as protoplasts ceased production of alpha-amylase. DNA degradation did not result in the accumulation of discrete low molecular weight fragments. DNA degradation and cell death were prevented by LY83583, an inhibitor of gibberellin signaling in barley aleurone. We conclude that cell death in aleurone cells is hormonally regulated and is the final step of a developmental program that promotes successful seedling establishment.  相似文献   
55.
Abstract Long-term facilitation in Aplysia and other forms of long-term memory in invertebrates and vertebrates require the gene expression cascade induced by cAMP-responsive element binding protein (CREB). Normally, gene expression by CREB is inhibited by repressors. The molecular mechanisms by which the repression is relieved are not understood. Our results show that Aplysia CREB repressor is a substrate for degradation by the ubiquitin-proteasome pathway. Treatment with the facilitatory neurotransmitter 5-hydroxy tryptamine (5-HT) leads to CREB repressor degradation in vivo and the degradation can be blocked by a specific proteasome inhibitor. Our biochemical studies show that attachment of ubiquitin molecules marks the CREB repressor for degradation by the proteasome. Protein kinase C (PKC) stimulates ubiquitination and degradation of the CREB repressor. Our results suggest that proteolytic removal of the CREB repressor is a potential mechanism for controlling gene expression by CREB. Without stimulation, gene expression is suppressed by the CREB repressor. Upon stimulation with 5-HT, PKC is activated, causing enhancement in ubiquitination and degradation of the CREB repressor. Thus, regulation of proteolysis of the CREB repressor by PKC might be critical in determining whether or not CREB-mediated gene expression goes forward during induction of long-term facilitation.  相似文献   
56.

Introduction  

Studies investigating genetic risk factors for susceptibility to rheumatoid arthritis (RA) studied anti-citrullinated peptide antibody (CCP)-positive RA more frequently than anti-CCP-negative RA. One of the reasons for this is the perception that anti-CCP-negative RA may include patients that fulfilled criteria for RA but belong to a wide range of diagnoses. We aimed to evaluate the validity of this notion and explored whether clinical subphenotypes can be discerned within anti-CCP-negative RA.  相似文献   
57.
58.
Polycystic kidney disease (PKD) is a genetically heterogeneous disorder. In addition to the many PKD-causative loci mapped in mouse and human, a number of reports indicate that modifier loci greatly influence the course of disease progression. Recently we reported a new mouse mutation, kat2J, on chromosome (Chr) 8 that causes late-onset PKD and anemia. During the mapping studies it was noted that the severity of PKD in the mutant (C57BL/6J-kat2J/+ x CAST/Ei)F2 generation was more variable than that in the parental C57BL/6J strain. This suggested that genetic background or modifier genes alter the clinical manifestations and progression of PKD. Genome scans using molecular markers revealed three loci that affect the severity of PKD. The CAST-derived modifier on Chr 1 affects both kidney weight and hematocrit. The CAST-derived modifier on Chr 19 affects kidney weight, and the C57BL/6J-derived modifier on Chr 2 affects hematocrit. Additional modifier loci are noted that interact with and modulate the effects of these three loci. The mapping of these modifier genes and their eventual identification will help to uncover factors that can delay disease progression. These, in turn, could be used to design suitable modes of therapy for various forms of human PKD.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号