首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   12篇
  165篇
  2021年   3篇
  2016年   5篇
  2015年   2篇
  2014年   9篇
  2013年   5篇
  2012年   3篇
  2011年   11篇
  2010年   3篇
  2009年   9篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
  1921年   1篇
  1890年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
81.
Early events in the cellular formation of proparathyroid hormone   总被引:1,自引:1,他引:1       下载免费PDF全文
Early events in the cellular synthesis and subsequent transfer into membrane-limited compartments of pre-proparathyroid hormone (pre-proPTH) and proparathyroid hormone (proPTH) were investigated by electrophoretic analyses of newly synthesized proteins in subcellular fractions of parthyroid gland slices pulse-labeled for 0.5-5 min with [(35)S] methionine. During these short times of incubation, both pre-proPTH and proPTH were confined to the microsomal fraction. Labeled pre-proPTH and proPTH were detected in a 30-s interval between 0.5 and 1.0 min of incubation. The radioactivity in proPTH became relatively constant between 3 and 5 min, whereas the radioactivity in ProPTH increased markedly over this period. When corrected for the known content of methionine in the prohormone and the prohormone, we found four times as much radiolabeled prohormone as prehormone between 0.5 and 1.0 min of synthesis. Sequestration of labeled prohomrone into endoplasmic reticulum compartments was shown by treatment of the microsomal fraction with chymotrypsin and trypsin, which resulted in the degradation of the prehormone but not of the prohormones. Approximately 50 percent of pre-prohormone and 25 percent of prohormone were released from the microsomes by their extraction with 1.0 M KCl, whereas 80-90 percent of both was released by treatment with Triton X-100. These results in intact cells support the signal hypothesis proposed by Blobel and his co-workers in studies utilizing cell-free systems, inasmuch as the results indicate transfer of prohormone into the cisternal space of the rough endoplasmic reticulum concomitant with the growth of the nascent polypeptide chain. Appearance of membrane-sequestered proPTH takes place without entry of pre-proPTH into the cisternal space, suggesting that proteolytic removal of the leader peptide occurs during transfer of the polypeptide through the lipid bilayer. Further evidence in support of this process is that pre-proPTH is only partly extracted from the microsomes by treatment with 1.0 M KCl, suggesting that a substantial fraction of the nascent pre-proPTH is integrally inserted into the membranes before it is cleaved to form proPTH.  相似文献   
82.
83.
Cumulative pressures from global climate and ocean change combined with multiple regional and local‐scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio‐economic settings, we present an Adaptive Resilience‐Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press‐type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse‐type (acute) stressors (e.g. storms, bleaching events, crown‐of‐thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo‐Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on‐the‐ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.  相似文献   
84.
85.
86.

Introduction  

Studies investigating genetic risk factors for susceptibility to rheumatoid arthritis (RA) studied anti-citrullinated peptide antibody (CCP)-positive RA more frequently than anti-CCP-negative RA. One of the reasons for this is the perception that anti-CCP-negative RA may include patients that fulfilled criteria for RA but belong to a wide range of diagnoses. We aimed to evaluate the validity of this notion and explored whether clinical subphenotypes can be discerned within anti-CCP-negative RA.  相似文献   
87.
88.
An actin depolymerizing protein from pig plasma   总被引:10,自引:0,他引:10  
H E Harris  J Gooch 《FEBS letters》1981,123(1):49-53
  相似文献   
89.
90.
Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα−/− mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα−/− mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα−/− mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα−/− mice and the advances that are now possible with the use of adult, rescued knockout animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号