全文获取类型
收费全文 | 934410篇 |
免费 | 102177篇 |
国内免费 | 1265篇 |
专业分类
1037852篇 |
出版年
2018年 | 8580篇 |
2017年 | 8400篇 |
2016年 | 11643篇 |
2015年 | 15559篇 |
2014年 | 18302篇 |
2013年 | 26043篇 |
2012年 | 29617篇 |
2011年 | 30555篇 |
2010年 | 20521篇 |
2009年 | 18841篇 |
2008年 | 27239篇 |
2007年 | 27850篇 |
2006年 | 26440篇 |
2005年 | 25146篇 |
2004年 | 25028篇 |
2003年 | 23919篇 |
2002年 | 23307篇 |
2001年 | 40399篇 |
2000年 | 40529篇 |
1999年 | 32453篇 |
1998年 | 11714篇 |
1997年 | 11972篇 |
1996年 | 11535篇 |
1995年 | 10652篇 |
1994年 | 10575篇 |
1993年 | 10415篇 |
1992年 | 27137篇 |
1991年 | 26514篇 |
1990年 | 26162篇 |
1989年 | 25707篇 |
1988年 | 23799篇 |
1987年 | 22542篇 |
1986年 | 21002篇 |
1985年 | 21254篇 |
1984年 | 17327篇 |
1983年 | 15051篇 |
1982年 | 11361篇 |
1981年 | 10263篇 |
1980年 | 9679篇 |
1979年 | 16530篇 |
1978年 | 13011篇 |
1977年 | 11817篇 |
1976年 | 11247篇 |
1975年 | 12662篇 |
1974年 | 13572篇 |
1973年 | 13397篇 |
1972年 | 12033篇 |
1971年 | 10981篇 |
1970年 | 9551篇 |
1969年 | 8999篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
C F Reilly N B Schechter J Travis 《Biochemical and biophysical research communications》1985,127(2):443-449
Human neutrophil cathepsin G and human skin chymase can inactivate bradykinin by cleavage at the carboxy terminal phenylalanyl-arginyl peptide bond of this polypeptide. The mast cell enzyme is far more effective than cathepsin G, the rates of hydrolysis being comparable to that found for angiotensin I to angiotensin II conversion (C.F. Reilly, D. Tewksbury, N. Schechter, and J. Travis, J. Biological Chemistry 257:8619-8622). This ability to both inactivate bradykinin and accelerate the production of angiotensin II may be of significance in the development of biochemical events associated with inflammation. 相似文献
982.
Reaction of triosephosphate isomerase with L-glyceraldehyde 3-phosphate and triose 1,2-enediol 3-phosphate 总被引:2,自引:0,他引:2
J P Richard 《Biochemistry》1985,24(4):949-953
Triosephosphate isomerase catalyzes the isomerization and/or racemization reactions of L-glyceraldehyde 3-phosphate (LGAP), the enantiomer of the physiological substrate. The reaction is inhibited by the active site directed reagent glycidol phosphate. The amount of protonation product formation catalyzed by a fixed enzyme concentration is nearly independent of increasing steady-state concentrations of triose 1,2-enediol 3-phosphate caused by buffer catalysis of LGAP deprotonation. Therefore, enzymatic protonation of the enediol or enediolate, which could account for the observed enzymatic catalysis of LGAP isomerization and/or racemization, is at best a minor reaction. Instead LGAP reacts directly at the enzyme active site. Triosephosphate isomerase catalysis of the protonation of triose 1,2-enediol 3-phosphate was expected because of the strong evidence supporting an enediol reaction intermediate for the overall reaction catalyzed by isomerase. The most reasonable explanation for the failure to observe enzymatic protonation is that in solution the enediol undergoes beta elimination of phosphate (t 1/2 is estimated to be 10(-6) s) faster than it can diffuse to and form a complex with isomerase. 相似文献
983.
The involvement of GTP binding proteins in muscarinic acetylcholine receptor (mAChR) mediated responses of cultured chick embryonic cardiac muscle cells was studied by using islet activating protein (IAP) from Bordetella pertussis. Incubation of cells for 24 h with IAP resulted in inhibition of subsequent IAP-catalyzed incorporation of [alpha-32P]ADP-ribose into membrane proteins of Mr 39 000 (No alpha) and 41 000 (Ni alpha); treatment of cultures with 5 ng/mL IAP was sufficient to ADP-ribosylate all available No alpha and Ni alpha. Inhibition of forskolin-stimulated cAMP accumulation by the muscarinic agonist carbachol was abolished in cultures pretreated with IAP. The affinity of carbachol for the mAChR in membranes from IAP-treated cells was considerably decreased compared to control membranes and was not further decreased by addition of guanyl-5'-yl imidodiphosphate. In contrast, the affinity of carbachol for the mAChR on intact cells was not affected by pretreatment with IAP. To investigate the involvement of No and/or Ni in mAChR-mediated increases in K+ permeability, the effect of IAP treatment on mAChR stimulation of 86Rb+ efflux was determined. Treatment of cultures with 5 ng/mL IAP for 24 h completely blocked the stimulation of 86Rb+ efflux evoked by carbachol. Because previous work has shown that mAChR regulation of K+ permeability is independent of changes in cAMP levels, these results suggest a role for No and/or Ni in coupling the mAChR directly to K+ channels in the heart. 相似文献
984.
Equilibrium binding studies have been performed over a range of temperatures from 25.4 to 47.3 degrees C between wheat germ agglutinin isolectin I (WGA I) and the alpha 2-3 isomer of (N-acetylneuraminyl)lactose (NeuNAc alpha 2-3Gal beta 1-4G1c). Proton nuclear magnetic resonance spectroscopy at 360 MHz has been used to monitor titrations in this system under conditions where the fraction of total ligand which is bound is small, yet the fractional occupation of sites covers a wide range. Several of the ligand resonances, including the N-acetyl methyl and the axial and equatorial hydrogens at carbon 3 of the NeuNAc residue, are shifted and broadened in the presence of WGA due to chemical exchange between the free and bound environments. The lifetime broadening of the N-acetyl resonance at room temperature of a series of related sialyloligosaccharides has been previously used by us to measure binding affinities to two WGA isolectins [Kronis, K.A., & Carver, J.P. (1982) Biochemistry 21, 3050-3057]. In this paper we report the temperature dependence of the apparent bound shifts and the apparent bound line widths of the N-acetyl, H3a, and H3e peaks. The true bound shifts for the three resonances have been obtained from these data by using the equations derived by Swift and Connick [Swift, T.J., & Connick, R.E. (1962) J. Chem. Phys. 37, 307-320]. The total bound shifts, per monomer, were found to be -1.98, -4.0, and -0.8 ppm for the N-acetyl, the H3a, and the H3e resonances, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
985.
A protein which specifically binds [3H]benzo[a]pyrene and other polycyclic aromatic hydrocarbons has been purified over 6000-fold from rat hepatic cytosol by using ion-exchange, gel permeation, and hydrophobic interaction chromatography. The binding protein differs from the 9S binding protein characterized in other laboratories. A Stokes radius of 2.75 nm was determined by gel filtration on Sephadex G-100. A sedimentation coefficient of 3.3 S was determined by using sucrose gradient analysis. The ability of this protein to bind total rat liver DNA as well as subclones containing portions of the rat cytochrome P-450c gene was investigated. Under high stringency conditions, this binding protein was found to interact in a specific and saturable manner with several subclones of the rat cytochrome P-450c gene containing 5'-upstream sequences, as well as portions of intron 1. Binding was not observed to the coding portions of the gene. These data implicate the "4S" binding protein in the transregulation of rat cytochrome P-450c expression. 相似文献
986.
Nucleoprotein hybridization: a method for isolating specific genes as high molecular weight chromatin 总被引:2,自引:0,他引:2
We describe a new technique designed to isolate specific eukaryotic genes as native oligonucleosome fragments. The isolation method consists of hybridization of single-stranded termini of chromatin restriction fragments to complementary mercurated DNA probes, followed by isolation of the hybrids by sulfhydryl-Sepharose chromatography. SV40 minichromosomes were used to test the effectiveness of the technique. About 80% of KpnI- or BamHI-restricted and lambda exonuclease treated SV40 minichromosomes hybridized to an appropriate DNA probe after a 12-h hybridization reaction under mild conditions (0.1 M aqueous salt, 37 degrees C, pH 8). When the restricted minichromosomes were mixed with a 15-fold excess of "background" chromatin from sea urchin embryos, nucleoprotein hybridization was able to reisolate the SV40 chromatin to 88% purity with a 63% yield. This represented a 115-fold enrichment of specific genes as chromatin. Results of electron microscopy and polyacrylamide gel electrophoresis indicate that the hybridized SV40 chromatin has not lost the major chromosomal proteins characteristic of SV40 nor acquired significant amounts of protein due to exchange with background chromatin. Our experimental results show that it is currently possible to isolate repeated genes from higher eukaryotes for structural and biochemical study of the proteins involved with gene regulation. 相似文献
987.
An enzyme that converts [3H, 32P]ATP, with a 3H:32P ratio of 1:1, to oligoadenylates with the same 3H:32P ratio was increased in plants following treatment with human leukocyte interferon or plant antiviral factor or inoculation with tobacco mosaic virus. The enzyme was extracted from tobacco leaves, callus tissue cultures, or cell suspension cultures. The enzyme, a putative plant oligoadenylate synthetase, was immobilized on poly(rI) . poly(rC)-agarose columns and converted ATP into plant oligoadenylates. These oligoadenylates were displaced from DEAE-cellulose columns with 350 mM KCl buffer, dialyzed, and further purified by high-performance liquid chromatography (HPLC) and DEAE-cellulose gradient chromatography. In all steps of purification, the ratio of 3H:32P in the oligoadenylates remained 1:1. The plant oligoadenylates isolated by displacement with 350 mM KCl had a molecular weight greater than 1000. The plant oligoadenylates had charges of 5- and 6-. HPLC resolved five peaks, three of which inhibited protein synthesis in reticulocyte and wheat germ systems. Partial structural elucidation of the plant oligoadenylates has been determined by enzymatic and chemical treatments. An adenylate with a 3',5'-phosphodiester and/or a pyrophosphoryl linkage with either 3'- or 5'-terminal phosphates is postulated on the basis of treatment of the oligoadenylates with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase and acid and alkaline hydrolyses. The plant oligoadenylates at 8 X 10(-7) M inhibit protein synthesis by 75% in lysates from rabbit reticulocytes and 45% in wheat germ cell-free systems.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
988.
Evidence from 13C NMR for polarization of the carbonyl of oxaloacetate in the active site of citrate synthase 总被引:1,自引:0,他引:1
The carbon-13 NMR spectrum of oxaloacetate bound in the active site of citrate synthase has been obtained at 90.56 MHz. In the binary complex with enzyme, the positions of the resonances of oxaloacetate are shifted relative to those of the free ligand as follows: C-1 (carboxylate), -2.5 ppm; C-2 (carbonyl), +4.3 ppm; C-3 (methylene), -0.6 ppm; C-4 (carboxylate), +1.3 ppm. The change observed in the carbonyl chemical shift is successively increased in ternary complexes with the product [coenzyme A (CoA)], a substrate analogue (S-acetonyl-CoA), and an acetyl-CoA enolate analogue (carboxymethyl-CoA), reaching a value of +6.8 ppm from the free carbonyl resonance. Binary complexes are in intermediate to fast exchange on the NMR time scale with free oxaloacetate; ternary complexes are in slow exchange. Line widths of the methylene resonance in the ternary complexes suggest complete immobilization of oxaloacetate in the active site. Analysis of line widths in the binary complex suggests the existence of a dynamic equilibrium between two or more forms of bound oxaloacetate, primarily involving C-4. The changes in chemical shifts of the carbonyl carbon indicate strong polarization of the carbonyl bond or protonation of the carbonyl oxygen. Some of this carbonyl polarization occurs even in the binary complex. Development of positive charge on the carbonyl carbon enhances reactivity toward condensation with the carbanion/enolate of acetyl-CoA in the mechanism which has been postulated for this enzyme. The very large change in the chemical shift of the reacting carbonyl in the presence of an analogue of the enolate of acetyl-CoA supports this interpretation. 相似文献
989.
The effect of high static pressures on the internal structure of the immunoglobulin light chain (Bence-Jones) dimer from the patient Mcg was assessed with measurements of intrinsic protein fluorescence polarization and intensity. Depolarization of intrinsic fluorescence was observed at relatively low pressures (less than 2 kbar), with a standard volume change of -93 mL/mol. The significant conformational changes indicated by these observations were not attributable to major protein unfolding, since pressures exceeding 2 kbar were required to alter intrinsic fluorescence emission maxima and yields. Fluorescence intensity and polarization measurements were used to investigate pressure effects on the binding of bis(8-anilino-naphthalene-1-sulfonate) (bis-ANS), rhodamine 123, and bis(N-methylacridinium nitrate) (lucigenin). Below 1.5 kbar the Mcg dimer exhibited a small decrease in affinity for bis-ANS (standard volume change approximately 5.9 mL/mol). At 3 kbar the binding activity increased by greater than 250-fold (volume change -144 mL/mol) and remained 10-fold higher than its starting value after decompression. With rhodamine 123 the binding activity showed an initial linear increase but plateaued at pressures greater than 1.5 kbar (standard volume change -23 mL/mol). These pressure effects were completely reversible. Binding activity with lucigenin increased slightly at low pressures (standard volume change -5.5 mL/mol), but the protein was partially denatured at pressures greater than 2 kbar. Taken in concert with the results of parallel binding studies in crystals of the Mcg dimer, these observations support the concept of a large malleable binding region with broad specificity for aromatic compounds.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
990.
Substrate specificity and protonation state of ornithine transcarbamoylase as determined by pH studies 总被引:5,自引:0,他引:5
The ornithine transcarbamoylase catalyzed reaction and its inhibition by L-norvaline have been investigated between pH 5.5 and 10.5. The steady-state turnover rate (kcat) of the enzyme from Escherichia coli increases with pH and plateaus above pH 9. Its change with pH conforms to a single protonation process with an apparent pKa of 7.3. The effect of pH on the apparent Michaelis constant (KMapp) of L-ornithine suggests that this diamino acid in its cationic form is not the substrate. Treating only the zwitterions of ornithine as substrate, the pH profile of the pseudo-first-order rate constant (kcat/KMz) of the reaction is a bell-shaped curve characterized by pKa's of 6.2 and 9.1 and asymptotic slopes of +/- 1. Similar pKa's (6.3 and 9.3) are obtained for the pKi profile of zwitterionic L-norvaline, a competitive inhibitor. The pKi profile further indicates that the alpha-amino group of the inhibitor must be charged for binding. Together, these pH profiles provide sufficient information to suggest that only the minor zwitterionic species of ornithine, H2N(CH2)3CH(NH3+)COO-, binds the enzyme productively. The selection of this substrate form by the enzyme leads to a Michaelis complex in which ornithine is poised for nucleophilic attack. Following such binding, the need for deprotonation of the delta-NH3+ group is avoided, and transcarbamoylation becomes energetically more feasible. Reaction schemes accounting for the effects of pH are proposed for the enzymic reaction. 相似文献