首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477081篇
  免费   47582篇
  国内免费   216篇
  2018年   4327篇
  2017年   4457篇
  2016年   7218篇
  2015年   11679篇
  2014年   12372篇
  2013年   15706篇
  2012年   16303篇
  2011年   13927篇
  2010年   10010篇
  2009年   9420篇
  2008年   11519篇
  2007年   11621篇
  2006年   11249篇
  2005年   16398篇
  2004年   15048篇
  2003年   13087篇
  2002年   10536篇
  2001年   19675篇
  2000年   19314篇
  1999年   16539篇
  1998年   5688篇
  1997年   5805篇
  1996年   5579篇
  1995年   5109篇
  1994年   5224篇
  1993年   5055篇
  1992年   14371篇
  1991年   13908篇
  1990年   13849篇
  1989年   13760篇
  1988年   12661篇
  1987年   12017篇
  1986年   11080篇
  1985年   11207篇
  1984年   8867篇
  1983年   7638篇
  1982年   5636篇
  1981年   4999篇
  1980年   4837篇
  1979年   8535篇
  1978年   6547篇
  1977年   5798篇
  1976年   5632篇
  1975年   6252篇
  1974年   6626篇
  1973年   6562篇
  1972年   5974篇
  1971年   5357篇
  1970年   4748篇
  1969年   4442篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
The quality of milk products is threatened by the formation of biofilms of thermophilicstreptococci on the internal surfaces of plate heat exchangers used in milk processing. Althoughattachment to stainless steel surfaces is one of the first stages in the development of a biofilm, themechanisms involved in attachment have not been reported. The cell surface properties of 12strains of thermophilic streptococci were examined to determine their importance in attachment tostainless steel surfaces. Hydrophobicity, extracellular polysaccharide production and cell surfacecharge varied between the different strains but could not be related to numbers attaching. Treatingthe cells with sodium metaperiodate, lysozyme or trichloroacetic acid to disrupt cell surfacepolysaccharide had no effect on attachment. Treatment with trypsin or sodium dodecyl sulphate toremove cell surface proteins resulted in a 100-fold reduction in the number of bacteria attaching.This result suggests that the surface proteins of the thermophilic streptococci are important intheir attachment to stainless steel.  相似文献   
912.
RNA turnover in Trypanosoma brucei.   总被引:14,自引:4,他引:10       下载免费PDF全文
  相似文献   
913.
914.
Horseradish peroxidase-catalyzed oxidation of p-phenetidine in the presence of either glutathione (GSH), cysteine, or N-acetylcysteine led to the production of the appropriate thioyl radical which could be observed using EPR spectroscopy in conjunction with the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. This confirms earlier work using acetaminophen (Ross, D., Albano, E., Nilsson, U., and Moldéus, P. (1984) Biochem. Biophys. Res. Commun. 125, 109-115). The further reactions of glutathionyl radicals (GS.), generated during horseradish peroxidase-catalyzed oxidation of p-phenetidine and acetaminophen in the presence of GSH, were investigated by following kinetics of oxygen uptake and oxidized glutathione (GSSG) formation. Oxygen uptake and GSSG generation were dependent on the concentration of GSH but above that which was required for maximal interaction with the primary amine or phenoxy radical generated during peroxidatic oxidation of p-phenetidine or acetaminophen, suggesting that a secondary GSH-dependent process was responsible for oxygen uptake and GSSG production. GSSG was the only product of thiol oxidation detected during peroxidatic oxidation of p-phenetidine or acetaminophen in the presence of GSH, but under nitrogen saturation conditions its production was reduced to 8 and 33% of the corresponding amounts obtained under aerobic conditions in the cases of p-phenetidine and acetaminophen, respectively. Nitrogen saturation conditions did not affect horseradish peroxidase-catalyzed metabolism. This shows that the main route of GSSG generation in such reactions is not by dimerization of GS. but via mechanism(s) involving oxygen consumption such as via GSSG-. or via GSOOH.  相似文献   
915.
We have reviewed the evidence in favor of a prostaglandin mediator of the thermal responses in fever and found that PGE injected into the hypothalamus does not always cause fever, that cerebrospinal fluid concentrations of PGE are not reliable reflections of hypothalamic events, and that antipyretic drugs may act in ways other than inhibiting PGE synthesis. Fever is not blocked by prostaglandin antagonists, nor by ablation of PGE-sensitive areas of the brain. There is poor correlation between the effects of pyrogens and of PGE on cerebral neurons. There is evidence that at least one prostanoid other than prostaglandin is a mediator of fever, but the prostanoid has not been identified yet. We conclude that PGE may contribute to the neural responses in fever but is not essential.  相似文献   
916.
917.
Three different deoxyribonucleoside kinases with specificities toward thymidine, deoxyguanosine, and deoxyadenosine/deoxycytidine, respectively, are identified in Bacillus subtilis. The deoxyadenosin/deoxycytidine kinase is purified 950-fold employing blue Sepharose CL-6B column chromatography. The two deoxyribonucleoside kinase activities copurify and are present in the same band after polyacrylamide gel electrophoresis. The molecular weight is determined by gel filtration to be 47,000. Cytidine, adenosine, arabinosylcytosine, and arabinosyladenine are substrates for the enzyme. The activities toward these substrates are less than 20% of the activities obtained with deoxyadenosin and deoxycytidine. The deoxycytidine and deoxyadenosine saturation curves are hyperbolic with Km values for both nucleosides around 5 microM. The maximal velocities for the two deoxyribonucleosides are nearly identical with GTP as phosphate donor. GTP is the best donor showing hyperbolic saturation curves and Km values around 150 microM depending on the deoxyribonucleoside concentration. dATP and dCTP are inhibitors when GTP is the phosphate donor. They may both act as phosphate donors themselves. A divalent metal ion is required, Mg2+ giving the highest activity. A spontaneous mutant, selected as resistant to 5-fluorodeoxycytidine, lacks both deoxycytidine and deoxyadenosine kinase activity, while it retains normal activities toward deoxyguanosine, deoxyuridine, and thymidine.  相似文献   
918.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
919.
The possibility to utilize fiber sludge, waste fibers from pulp mills and lignocellulose-based biorefineries, for combined production of liquid biofuel and biocatalysts was investigated. Without pretreatment, fiber sludge was hydrolyzed enzymatically to monosaccharides, mainly glucose and xylose. In the first of two sequential fermentation steps, the fiber sludge hydrolysate was fermented to cellulosic ethanol with the yeast Saccharomyces cerevisiae. Although the final ethanol yields were similar, the ethanol productivity after 9.5?h was 3.3?g/l/h for the fiber sludge hydrolysate compared with only 2.2?g/l/h for a reference fermentation with similar sugar content. In the second fermentation step, the spent fiber sludge hydrolysate (the stillage obtained after distillation) was used as growth medium for recombinant Aspergillus niger expressing the xylanase-encoding Trichoderma reesei (Hypocrea jecorina) xyn2 gene. The xylanase activity obtained with the spent fiber sludge hydrolysate (8,500?nkat/ml) was higher than that obtained in a standard medium with similar monosaccharide content (1,400?nkat/ml). Analyses based on deglycosylation with N-glycosidase?F suggest that the main part of the recombinant xylanase was unglycosylated and had molecular mass of 20.7?kDa, while a minor part had N-linked glycosylation and molecular mass of 23.6?kDa. Chemical analyses of the growth medium showed that important carbon sources in the spent fiber sludge hydrolysate included xylose, small aliphatic acids, and oligosaccharides. The results show the potential of converting waste fiber sludge to liquid biofuel and enzymes as coproducts in lignocellulose-based biorefineries.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号