首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   14篇
  国内免费   1篇
  2024年   1篇
  2023年   3篇
  2022年   12篇
  2021年   16篇
  2020年   18篇
  2019年   18篇
  2018年   8篇
  2017年   5篇
  2016年   11篇
  2015年   28篇
  2014年   28篇
  2013年   28篇
  2012年   61篇
  2011年   60篇
  2010年   33篇
  2009年   17篇
  2008年   35篇
  2007年   37篇
  2006年   32篇
  2005年   36篇
  2004年   33篇
  2003年   25篇
  2002年   11篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1992年   1篇
  1991年   1篇
排序方式: 共有575条查询结果,搜索用时 15 毫秒
21.
Both to demonstrate whether the predominant species are dipolar ion or the neutral form and to predict the change of dipolar form to neutral form ratio in ethanol-water mixtures, the macroscopic protonation constants of eight alpha-amino acid (glycine, L-alanine, L-valine, L-leucine, L-phenylalanine, L-serine, L-methionine, and L-isoleucine) were determined potentiometrically in 20-80% (v/v) ethanol-water mixtures at 25 degrees C with an ionic strength of 0.10 M. The calculation of the constants was carried out using a PKAS computer program. The effect of solvent composition on the protonation constants and the dipolar ionic to neutral form ratio of these acids in the mixed solvents are discussed. One can conclude that the dipolar form of amino acids, HA(+/-), dominates in ethanol-water mixtures.  相似文献   
22.
MEI-9 is the Drosophila homolog of the human structure-specific DNA endonuclease XPF. Like XPF, MEI-9 functions in nucleotide excision repair and interstrand crosslink repair. MEI-9 is also required to generate meiotic crossovers, in a function thought to be associated with resolution of Holliday junction intermediates. We report here the identification of MUS312, a protein that physically interacts with MEI-9. We show that mutations in mus312 elicit a meiotic phenotype identical to that of mei-9 mutants. A missense mutation in mei-9 that disrupts the MEI-9-MUS312 interaction abolishes the meiotic function of mei-9 but does not affect the DNA repair functions of mei-9. We propose that MUS312 facilitates resolution of meiotic Holliday junction intermediates by MEI-9.  相似文献   
23.
24.
25.
Human serum butyrylcholinesterase (BChE) has been converted into a stable but less active desensitized form when heated at 45°C for 24 h. The desensitized BChE follows Michaelis-Menten kinetics, whereas native enzyme exhibits slightly negative cooperativity with respect to butyrylthiocholine binding. In this study, we investigated the effects of Ni2+, Co2+, and Mn2+ on the desensitized BChE. It is found that all three ions were noncompetitive inhibitors of the desensitized BChE, and K i values have been determined as 7.816±1.060 mM, 48.722±4.635 mM, and 84.795±5.249 mM for Ni2+, Co2+, and Mn2+, respectively. In our previous study, these ions were linear mixed-type inhibitors of the native BChE. This finding confirms that desensitized BChE changes to a different conformation than native BChE. From the comparison of K i values of the trace elements, it can be said that Ni2+ is a more effective inhibitor of the desensitized BChE than Co2+ and Mn2+.  相似文献   
26.
In this study, alterations in the liver antioxidant enzymes status and lipid peroxidation in short-term (8-weeks) and long-term (24-weeks) diabetic rats were examined. Glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) levels were significantly increased, but superoxide dismutase (SOD) activity was significantly reduced in 8-weeks diabetic rats, compared to control. Catalase (CAT) activity, however, was found unchanged. In 24-weeks diabetic rats, while GSH-Px activity was unchanged, but SOD and CAT activities and MDA levels were significantly increased, compared to control. These results suggest that diabetes-induced alterations in tissue antioxidant system may reflect a generalized increase in tissue oxidative stress. It can be concluded that lipid peroxidation and antioxidant enzyme levels are elevated in diabetic condition. Hence, diabetes mellitus, if left untreated, may increase degenerative processes due to accumulation of oxidative free radicals.  相似文献   
27.
28.
Transthyretin (TTR) is a visceral protein, which facilitates the transport of thyroid hormones in blood and cerebrospinal fluid. The homotetrameric structure of TTR enables the simultaneous binding of two thyroid hormones per molecule. Each TTR subunit provides a single cysteine residue (Cys10), which is frequently affected by oxidative post‐translational modifications. As Cys10 is part of the thyroid hormone‐binding channel within the TTR molecule, PTM of Cys10 may influence the binding of thyroid hormones. Therefore, we analysed the effects of Cys10 modification with sulphonic acid, cysteine, cysteinylglycine and glutathione on binding of triiodothyronine (T3) by molecular modelling. Furthermore, we determined the PTM pattern of TTR in serum of patients with thyroid disease by immunoprecipitation and mass spectrometry to evaluate this association in vivo. The in silico assays demonstrated that oxidative PTM of TTR resulted in substantial reorganization of the intramolecular interactions and also affected the binding of T3 in a chemotype‐ and site‐specific manner with S‐glutathionylation as the most potent modulator of T3 binding. These findings were supported by the in vivo results, which indicated thyroid function‐specific patterns of TTR with a substantial decrease in S‐sulphonated, S‐cysteinylglycinated and S‐glutathionylated TTR in hypothyroid patients. In conclusion, this study provides evidence that oxidative modifications of Cys10 seem to affect binding of T3 to TTR probably because of the introduction of a sterical hindrance and induction of conformational changes. As oxidative modifications can be dynamically regulated, this may represent a sensitive mechanism to adjust thyroid hormone availability.  相似文献   
29.
Two lichen metabolites, rhizonaldehyde ( 1 ) and rhizonyl alcohol ( 2 ), were isolated from the acetone extract of Lobaria pulmonaria by chromatographic methods, and their chemical structures were determined by UV/VIS, IR, and 1D‐ and 2D‐NMR spectroscopic methods. The gastroprotective and in vivo antioxidant activities of extracts of L. pulmonaria and its metabolites, 1 and 2 , were investigated in indomethacin‐induced ulcer models in rats. The gastric lesions were significantly reduced by acetone, hexane, and CHCl3 extracts, with 75.3–41.5% inhibition. Rhizonyl alcohol ( 2 ) significantly reduced the gastric lesions with an inhibition rate of 84.6–42.8%, whereas rhizonaldehyde ( 1 ) significantly increased the gastric lesions. Antioxidant parameters and myeloperoxidase activities were also evaluated in the gastric tissues of the rats. Indomethacin caused oxidative stress, which resulted in lipid peroxidation in gastric tissues by decreasing the levels of the antioxidants as compared to healthy rat tissues. In contrast to indomethacin, all extracts and rhizonyl alcohol ( 2 ) caused a significant decrease in lipid peroxidation levels and an increase in antioxidant parameters, superoxide dismutase, glutathione peroxidase, and glutathione‐S‐transferase, and reduced glutathione in gastric tissues. The administration of rhizonyl alcohol ( 2 ) also resulted in a decrease in gastric myeloperoxidase activity increased by indomethacin. The gastroprotective effect of rhizonyl alcohol ( 2 ) can be attributed to its antioxidant properties and its suppressing effect on neutrophil infiltration into gastric tissues.  相似文献   
30.
Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified.

Trial Registration

ClinicalTrials.gov NCT01196871  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号