首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   10篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   10篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   19篇
  2014年   14篇
  2013年   20篇
  2012年   44篇
  2011年   37篇
  2010年   23篇
  2009年   9篇
  2008年   27篇
  2007年   33篇
  2006年   17篇
  2005年   27篇
  2004年   21篇
  2003年   15篇
  2002年   7篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
排序方式: 共有366条查询结果,搜索用时 15 毫秒
41.
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.  相似文献   
42.

Background

Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with end-stage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis.

Methods

The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previously-generated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed.

Results

We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. In mice, or ex vivo, the K8 G62C variant did not affect iron-accumulation in response to iron-rich diet or the extent of iron-induced hepatocellular injury.

Conclusion

In patients with hemochromatosis, intronic but not exonic K8/K18 variants associate with liver fibrosis development.  相似文献   
43.
Purification of n-BuOH fraction from 80% ethanol extract of Hypericum thasium Griseb. resulted in the isolation of three new compounds 3′,4,5′-trihydroxy-6-methoxy-2-O-α-l-arabinosylbenzophenone (1), 3′,4,5′,6-tetrahydroxy-2-O-α-l-arabinosylbenzophenone (2), and 3′,4-dihydroxy-5′-methoxy-2-O-α-l-arabinosyl-6-O-β-d-xylosylbenzophenone (3) along with a known flavonoid glycoside quercetin-3-O-α-l-arabinofuranoside (4). The structures of the new compounds were elucidated by 1D and 2D NMR analysis as well as HRESIMS. The isolated compounds (14), as well as quercetin, and kaempferol previously isolated from EtOAc fraction were screened against MAO-A inhibitory activity. When tested against the MAO-A quercetin and kaempferol displayed IC50 values of 19.6, and 17.5 μM, respectively. The IC50 values for MAO-A inhibition by compounds (14) were 310.3, 111.2, 726.0, and 534.1 μM, respectively. Standard inhibitor (clorgyline) exhibited MAO-A inhibition with an IC50 value of 0.5 μM.  相似文献   
44.
45.
46.
Sixty-six nonduplicate Bacteroides clinical isolates collected at Marmara University Hospital were tested to investigate carbapenem and metronidazole resistance profiles and to detect the resistance genes (cfiA and nim) and related insertion sequence (IS) elements. The study found that there were no strains resistant to metronidazole and nim genes were not detected in any of the strains. Five Bacteroides fragilis strains were resistant to meropenem, one of which was also resistant to imipenem. The cfiA gene was detected in 27% of strains, 32% of strains had the IS1187 element, and five strains harbored both gene cfiA and IS1187. These results indicate higher rates of carriage of the cfiA gene and IS1187 insertion elements than have been reported in other countries.  相似文献   
47.
Aging is defined as the accumulation of progressive organ dysfunction. Controlling the rate of aging by clarifying the complex pathways has a significant clinical importance. Nowadays, sirtuins have become famous molecules for slowing aging and decreasing age-related disorders. In the present study, we analyzed the SIRT1 gene polymorphisms (rs7895833 A>G, rs7069102 C>G and rs2273773 C>T) and its relation with levels of SIRT1, eNOS, PON-1, cholesterol, TAS, TOS, and OSI to demonstrate the association between genetic variation in SIRT1 and phenotype at different ages in humans. We observed a significant increase in the SIRT1 level in older people and found a significant positive correlation between SIRT1 level and age in the overall studied population. The oldest people carrying AG genotypes for rs7895833 have the highest SIRT1 level suggesting an association between rs7895833 SNP and lifespan longevity. Older people have lower PON-1 levels than those of adults and children which may explain the high levels of SIRT1 protein as a compensatory mechanism for oxidative stress in the elderly. The eNOS protein level was significantly decreased in older people as compared to adults. There was no significant difference in the eNOS level between older people and children. The current study is the first to demonstrate age-related changes in SIRT1 levels in humans and it is important for a much better molecular understanding of the role of the longevity gene SIRT1 and its protein product in aging. It is also the first study presenting the association between SIRT1 expression in older people and rs7895833 in SIRT1 gene.  相似文献   
48.
49.

Background

It is unclear to what extent pre-clinical studies in genetically homogeneous animal models of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder, can be informative of human pathology. The disease modifying effects in animal models of most therapeutic compounds have not been reproduced in patients. To advance therapeutics in ALS, we need easily accessible disease biomarkers which can discriminate across the phenotypic variants observed in ALS patients and can bridge animal and human pathology. Peripheral blood mononuclear cells alterations reflect the rate of progression of the disease representing an ideal biological substrate for biomarkers discovery.

Methods

We have applied TMTcalibrator?, a novel tissue-enhanced bio fluid mass spectrometry technique, to study the plasma proteome in ALS, using peripheral blood mononuclear cells as tissue calibrator. We have tested slow and fast progressing SOD1G93A mouse models of ALS at a pre-symptomatic and symptomatic stage in parallel with fast and slow progressing ALS patients at an early and late stage of the disease. Immunoassays were used to retest the expression of relevant protein candidates.

Results

The biological features differentiating fast from slow progressing mouse model plasma proteomes were different from those identified in human pathology, with only processes encompassing membrane trafficking with translocation of GLUT4, innate immunity, acute phase response and cytoskeleton organization showing enrichment in both species. Biological processes associated with senescence, RNA processing, cell stress and metabolism, major histocompatibility complex-II linked immune-reactivity and apoptosis (early stage) were enriched specifically in fast progressing ALS patients. Immunodetection confirmed regulation of the immunosenescence markers Galectin-3, Integrin beta 3 and Transforming growth factor beta-1 in plasma from pre-symptomatic and symptomatic transgenic animals while Apolipoprotein E differential plasma expression provided a good separation between fast and slow progressing ALS patients.

Conclusions

These findings implicate immunosenescence and metabolism as novel targets for biomarkers and therapeutic discovery and suggest immunomodulation as an early intervention. The variance observed in the plasma proteomes may depend on different biological patterns of disease progression in human and animal model.
  相似文献   
50.

Objective

To improve the efficiency of reactions of β-glucuronidase (GUS)-assisted glucuronic acid (GluA) removal within a microfluidic system.

Results

β-glucuronidase from Helix pomatia was immobilised and characterised in silica-based sol–gel monoliths. Efficiency of the GUS-doped silica monoliths was tested for hydrolysis of p-Nitrophenyl-β-d-glucuronide (pNP–GluA) in both ml-scaled medium via batch reactions and microfluidic environment via continuous-flow reactions. In the microfluidic platform, within a duration of 150 min of continuous operation (flow rate: 1 µL/min), the obtained highest pNP yield was almost 50% higher than that of the corresponding batchwise reaction. However, increased flow rates (3, 5, and 10 µL/min) resulted in lower conversion yields compared to 1 µL/min. The microfluidic platform demonstrated continuous hydrolytic activity for 7 days with considerable reaction yields while using a small amount of the enzyme.

Conclusion

These results revealed that usage of the microreactors has considerable potential to efficiently obtain bioactive GluA-free aglycons from various plant-derived β-glucuronides for pharmaceutical applications.

Graphical Abstract

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号