首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   8篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   11篇
  2014年   13篇
  2013年   20篇
  2012年   14篇
  2011年   16篇
  2010年   9篇
  2009年   6篇
  2008年   14篇
  2007年   11篇
  2006年   7篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1990年   1篇
排序方式: 共有170条查询结果,搜索用时 46 毫秒
161.
With almost 870 million people estimated to suffer from chronic hunger worldwide, undernourishment represents a major problem that severely affects people in developing countries. In addition to undernourishment, micronutrient deficiency alone can be a cause of serious illness and death. Large portions of the world population rely on a single, starch-rich crop as their primary energy source and these staple crops are generally not rich sources of micronutrients. As a result, physical and mental health problems related to micronutrient deficiencies are estimated to affect around two billion people worldwide. The situation is expected to get worse in parallel with the expanding world population. Improving the nutritional quality of staple crops seems to be an effective and straightforward solution to the problem. Conventional breeding has long been employed for this purpose but success has been limited to the existing diversity in the gene pool. However, biotechnology enables addition or improvement of any nutrient, even those that are scarce or totally absent in a crop species. In addition, biotechnology introduces speed to the biofortification process compared to conventional breeding. Genetic engineering was successfully employed to improve a wide variety of nutritional traits over the last decade. In the present review, progress toward engineering various types of major and minor constituents for the improvement of plant nutritional quality is discussed.  相似文献   
162.
In vitro experiments showed that ammonium bicarbonate and aqueous extracts of oregano were effective in inhibiting conidia germination and germ‐tube elongation of Venturia inaequalis. Complete inhibition was achieved by 1% ammonium bicarbonate, 2% oregano extract and 0.01% synthetic fungicide difenoconazole. Two orchard experiments were conducted on the highly susceptible cv. Mutsu to apple scab to investigate the efficacy of ammonium bicarbonate alone or in combination with an aqueous extract of oregano for the control of apple scab. In 2008 and 2009, except for the applications of 1% aqueous extract of oregano, the applications of ammonium bicarbonate (0.5 and 1%) and difenoconazole (0.01%) to trees at 10‐day intervals significantly reduced disease incidence and severity on leaves and fruit compared to the water‐treated control. In both years, the efficacy of 0.5 and 1% ammonium bicarbonate in inhibiting both disease incidence and severity on leaves and fruit was equally effective in all monthly assessments from June to September. Combining 0.5 and 1% ammonium bicarbonate with 1% aqueous extract of oregano did not significantly improve the efficacy of stand‐alone applications of treatments in the final assessment in 2008 and 2009. All treatments were neither phytotoxic to leaves and fruit nor did they adversely affect quality parameters of fruit including physiological disorders and taste both at harvest and after storage. These results indicate that ammonium bicarbonate treatment may be applied as an alternative chemical for the control of apple scab.  相似文献   
163.
164.
Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia.  相似文献   
165.

Background

Recent studies have demonstrated that immune factors might have a role in the pathophysiology of insulin resistance and type 2 diabetes mellitus (T2DM). Inappropriate glycemic control in patients with T2DM is an important risk factor for the occurrence of diabetes complications. The prevalence of celiac disease (CD) is high in type 1 diabetes mellitus however, there are scarce data about its prevalence in T2DM. Our aim was to investigate the prevalence of celiac disease among insulin-using type 2 diabetes patients with inappropriate glycemic control.

Methods

IgA tissue transglutaminase antibodies (tTGA IgA) test was performed as a screening test. A total of 135 patients with T2DM whose control of glycemia is inappropriate (HbAlc value >7%) in spite of using insulin treatment for at least 3-months (only insulin or insulin with oral antidiabetic drugs) and 115 healthy controls were enrolled in the study. Upper gastrointestinal endoscopy with duodenal biopsy was performed to all patients with raised tTGA IgA or selective lgA deficiency.

Results

Gender, age, body mass index (BMI) and tTGA IgA, kreatinin, calcium, LDL-cholesterol (LDL-C), total cholesterol, 25-OH vitamin D3 levels were similar between groups. Systolic and diastolic blood pressure, waist circumference, fasting plasma glucose, postprandial plasma glucose, urea, sodium, HbA1c, LDL-C, triglyceride, vitamin B12 levels were significantly higher in DM group (p < 0.0001). BMI, high-sensitive CRP, microalbuminuria, and AST, ALT, potassium, phosphorus levels were significantly higher in the T2DM group (p < 0.05). HDL-cholesterol and parathormone levels were significantly lower in the T2DM group (p < 0.05). Two of the 135 patients with T2DM were diagnosed with CD (1.45%).

Conclusions

The prevalence of celiac disease among patients with type 2 diabetes, with poor glycemic control despite insulin therapy, is slightly higher than the actual CD prevalence in general population. Type 2 diabetic patients with inappropriate control of glycemia in spite of insulin treatment might be additionally tested for Celiac disease especially if they have low C-peptide levels.
  相似文献   
166.
Biological and biomimetic synthesis of inorganics have been a major focus in hard tissue engineering as well as in green processing of advanced materials. Among the minerals formed by organisms, calcium phosphate mineralization is studied extensively to understand the formation of mineral-rich tissues. Herein, we report an engineered fusion protein that not only targets calcium phosphate minerals but also allows monitoring of biomineralization. To produce the bi-functional fusion protein, nucleotide sequence encoding combinatorially selected hydroxyapatite-binding peptides (HABP) was genetically linked to the 3' end of the open reading frame of green fluorescence protein (GFPuv) and successfully expressed in Escherichia coli. The fluorescence and binding activities of the bi-functional proteins were characterized by, respectively, using fluorescence microscopy and quartz crystal microbalance spectroscopy. The utility of GFPuv-HABP fusion protein was assessed for both time-wise monitoring of mineralization and the visualization of the mineralized tissues. We used an alkaline phosphatase-based reaction to control phosphate release, thereby mimicking biological processes, to monitor calcium phosphate mineralization. The increase in mineral amount was observed using the fusion protein at different time points. GFPuv-HABP1 was also used for efficient fluorescence labeling of mineralized regions on the extracted human incisors. Our results demonstrate a simple and versatile application of inorganic-binding peptides conjugated with bioluminescence proteins as bi-functional bioimaging molecular probes that target mineralization, and which can be employed to a wide range of biomimetic processing and cell-free tissue engineering.  相似文献   
167.
In the present study, we aimed to elucidate how strategies of reactive oxygen species (ROS) regulation and the antioxidant defense system changed during transition from C3 to C4 photosynthesis, by using the model genus Flaveria, which contains species belonging to different steps in C4 evolution. For this reason, four Flaveria species that have different carboxylation mechanisms, Flaveria robusta (C3), Flaveria anomala (C3–C4), Flaveria brownii (C4-like) and Flaveria bidentis (C4), were used. Physiological (growth, relative water content (RWC), osmotic potential), and photosynthetical parameters (stomatal conductance (gs), assimilation rate (A), electron transport rate (ETR)), antioxidant defense enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductases(GR)) and their isoenzymes, non-enzymatic antioxidant contents (ascorbate, glutathione), NADPH oxidase (NOX) activity, hydrogen peroxide (H2O2) content and lipid peroxidation levels (TBARS) were measured comparatively under polyethylene glycol (PEG 6000) induced osmotic stress. Under non-stressed conditions, there was a correlation only between CAT (decreasing), APX and GR (both increasing) and the type of carboxylation pathways through C3 to C4 in Flaveria species. However, they responded differently to PEG-induced osmotic stress in regards to antioxidant defense. The greatest increase in H2O2 and TBARS content was observed in C3F. robusta, while the least substantial increase was detected in C4-like F. brownii and C4F. bidentis, suggesting that oxidative stress is more effectively countered in C4-like and C4 species. This was achieved by a better induced enzymatic defense in F. bidentis (increased SOD, CAT, POX, and APX activity) and non-enzymatic antioxidants in F. brownii. As a response to PEG-induced oxidative stress, changes in activities of isoenzymes and also isoenzymatic patterns were observed in all Flaveria species, which might be related to ROS produced in different compartments of cells.  相似文献   
168.
Functional & Integrative Genomics - Garden cress (Lepidium sativum L.) is a Brassicaceae crop recognized as a healthy vegetable and a medicinal plant. Lepidium is one of the largest genera in...  相似文献   
169.
Acquired or innate resistance to chemotherapy is a major drawback of cancer therapeutics, which is frequently seen in epithelial cancers. However, the molecular mechanisms underlying chemotherapy resistance remain poorly understood. The mitochondrial pathway is a critical death pathway common to many different types of chemotherapy. Aberrations in this pathway can result in resistance to chemotherapy. The Bcl-2 family of proteins control commitment to programmed cell death by mitochondrial apoptosis. In this review, we will summarize the strategies in determining the components of apoptotic defects responsible for chemotherapy resistance, mainly focused on Bcl-2 protein network.  相似文献   
170.
Carbonic anhydrase IX (CA IX) has recently been validated as an antitumor/antimetastatic drug target. In this study, we examined the underlying molecular mechanisms and the anticancer activity of sulfonamide CA IX inhibitors against cervical cancer cell lines. The effects of several sulfonamides on HeLa, MDA-MB-231, HT-29 cancer cell lines, and normal cell lines (HEK-293, PNT-1A) viability were determined. The compounds showed high cytotoxic and apoptotic activities, mainly against HeLa cells overexpressing CA IX. We were also examined for intracellular reactive oxygen species (ROS) production; intra-/extracellular pH changes, for inhibition of cell proliferation, cellular mitochondrial membrane potential change and for the detection of caspase 3, 8, 9, and CA IX protein levels. Of the investigated sulfonamides, one compound was found to possess high cytotoxic and anti-proliferative effects in HeLa cells. The cytotoxic effect occurred via apoptosis, being accompanied by a return of pHe/pHi towards normal values as for other CA IX inhibitors investigated earlier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号