首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   21篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   10篇
  2019年   9篇
  2018年   6篇
  2017年   9篇
  2016年   15篇
  2015年   15篇
  2014年   28篇
  2013年   13篇
  2012年   32篇
  2011年   28篇
  2010年   11篇
  2009年   16篇
  2008年   17篇
  2007年   12篇
  2006年   16篇
  2005年   19篇
  2004年   13篇
  2003年   15篇
  2002年   14篇
  2001年   3篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1991年   2篇
  1965年   1篇
排序方式: 共有337条查询结果,搜索用时 15 毫秒
51.
Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.  相似文献   
52.
Resistance against radio(chemo)therapy-induced cell death is a major determinant of oncological treatment failure and remains a perpetual clinical challenge. The underlying mechanisms are manifold and demand for comprehensive, cancer entity- and subtype-specific examination. In the present study, resistance against radiotherapy was systematically assessed in a panel of human head-and-neck squamous cell carcinoma (HNSCC) cell lines and xenotransplants derived thereof with the overarching aim to extract master regulators and potential candidates for mechanism-based pharmacological targeting. Clonogenic survival data were integrated with molecular and functional data on DNA damage repair and different cell fate decisions. A positive correlation between radioresistance and early induction of HNSCC cell senescence accompanied by NF-κB-dependent production of distinct senescence-associated cytokines, particularly ligands of the CXCR2 chemokine receptor, was identified. Time-lapse microscopy and medium transfer experiments disclosed the non-cell autonomous, paracrine nature of these mechanisms, and pharmacological interference with senescence-associated cytokine production by the NF-κB inhibitor metformin significantly improved radiotherapeutic performance in vitro and in vivo. With regard to clinical relevance, retrospective analyses of TCGA HNSCC data and an in-house HNSCC cohort revealed that elevated expression of CXCR2 and/or its ligands are associated with impaired treatment outcome. Collectively, our study identifies radiation-induced tumor cell senescence and the NF-κB-dependent production of distinct senescence-associated cytokines as critical drivers of radioresistance in HNSCC whose therapeutic targeting in the context of multi-modality treatment approaches should be further examined and may be of particular interest for the subgroup of patients with elevated expression of the CXCR2/ligand axis.Subject terms: Radiotherapy, Head and neck cancer, Senescence, Tumour heterogeneity

  相似文献   
53.
There is increasing evidence that oxidative stress may play a role in the pathophysiology of hyperemesis gravidarum. Serum paraoxonase-1 (PON-1) is a high density lipoprotein (HDL)-associated enzyme that prevents oxidative modification of low density lipoprotein. The aim of the study was to measure the serum levels of PON-1 activity in women with hyperemesis gravidarum. Thirty-four women with hyperemesis gravidarum and 31 healthy pregnant women were enrolled in the study. Serum PON-1 activity was measured spectrophotometrically. Lipid hydroperoxide (LOOH) levels were measured by iodometric assay. PON-1 activity was significantly lower and LOOH levels were significantly higher in pregnant women with hyperemesis gravidarum than in healthy pregnant women (P < 0.0001, for all). There were significant correlations between PON-1 and LOOH, triglyceride, total cholesterol, HDL, low density lipoprotein (LDL) and high sensitive C-reactive protein (HSCRP; P < 0.0001, for all). By using multiple regression analysis LDL, HDL, HSCRP and LOOH were independent determinants of serum PON-1 activity in the study. Decreased PON-1 activity might be related to increased oxidative stress and inflammation in pregnant women with hyperemesis gravidarum. Subjects with hyperemesis gravidarum might be more prone to the development of atherogenesis due to low serum PON-1 activity.  相似文献   
54.
55.
Karyological studies have been investigated within 8 native Anatolian populations of oriental spruce (Picea orientalis (L.) Link) in Turkey. The somatic chromosome number of 2n = 2x = 24 has been observed in all accessions. The karyotypes are generally asymmetrical with most of the chromosomes having median to median-submedian centromeres. Inter-population variability of the karyotype was summarized with cluster analysis. We found that the karyotypes have positively correlated with the altitudes of the natural habitats. The high value of karyotype asymmetry may be attributed to both microenvironment and natural regeneration methods used in oriental spruce.  相似文献   
56.
Modification by O-GlcNAc involves a growing number of eucaryotic nuclear and cytosolic proteins. Glycosylation of intracellular proteins is a dynamic process that in several cases competes with and acts as a reciprocal modification system to phosphorylation. O-Linked beta-N-acetylglucosamine transferase (OGT) levels are highest in the brain, and neurodegenerative disorders such as Alzheimer disease have been shown to involve abnormally phosphorylated key proteins, probably as a result of hypoglycosylation. Here, we show that the neurodegenerative disease protein ataxin-10 (Atx-10) is associated with cytoplasmic OGT p110 in the brain. In PC12 cells and pancreas, this association is competed by the shorter OGT p78 splice form, which is down-regulated in brain. Overexpression of Atx-10 in PC12 cells resulted in the reconstitution of the Atx-10-OGT p110 complex and enhanced intracellular glycosylation activity. Moreover, in an in vitro enzyme assay using PC12 cell extracts, Atx-10 increased OGT activity 2-fold. These data indicate that Atx-10 might be essential for the maintenance of a critical intracellular glycosylation level and homeostasis in the brain.  相似文献   
57.
We investigated the effects of lipopolysachharide (LPS) on functional and structural properties of the blood-brain barrier (BBB) during pentylenetetrazole (PTZ)-induced epileptic seizures in rats. Arterial blood pressure was significantly elevated during epileptic seizures irrespective of LPS pretreatment. Plasma levels of interleukin (IL)-1, interleukin (IL)-6, nitric oxide (NO) and malondialdehyde (MDA) increased while catalase concentrations decreased in animals treated with LPS, PTZ and LPS plus PTZ. The significantly increased BBB permeability to Evans blue (EB) dye in the cerebral cortex, diencephalon and cerebellum regions of rats by PTZ-induced seizures was markedly reduced upon LPS pretreatment. Immunoreactivity for tight junction proteins, zonula occludens-1 and occludin, did not change in brain vessels of animals treated with PTZ and LPS plus PTZ. Glial fibrillary acidic protein immunoreactivity was increased in LPS, but not in PTZ and LPS plus PTZ. These results indicate that LPS pretreatment reduces the passage of EB dye bound to albumin into the brain, at least partly, by increasing plasma NO and IL-6 levels during PTZ-induced epileptic seizures. We suggest that LPS may provide protective effects on the BBB integrity during epileptic seizures through transcellular pathway, since the paracellular route remained unaffected by LPS and LPS plus PTZ.  相似文献   
58.
Previous studies have revealed the activation of neutral sphingomyelinase (N-SMase)/ceramide pathway in hepatic tissue following warm liver ischemia reperfusion (IR) injury. Excessive ceramide accumulation is known to potentiate apoptotic stimuli and a link between apoptosis and endoplasmic reticulum (ER) stress has been established in hepatic IR injury. Thus, this study determined the role of selective N-SMase inhibition on ER stress and apoptotic markers in a rat model of liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60?min, followed by 60?min reperfusion. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reactions monitoring (MRM) method using ultrafast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared with controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. A significant increase was observed in ER stress markers C/EBP-homologous protein (CHOP) and 78?kDa glucose-regulated protein (GRP78) in IR injury, which was not significantly altered by N-SMase inhibition. Inhibition of N-SMase caused a significant reduction in phospho-NF-kB levels, hepatic TUNEL staining, cytosolic cytochrome c, and caspase-3, -8, and -9 activities which were significantly increased in IR injury. Data herein confirm the role of ceramide in increased apoptotic cell death and highlight the protective effect of N-SMase inhibition in down-regulation of apoptotic stimuli responses occurring in hepatic IR injury.  相似文献   
59.
60.
Recent studies have shown that learning and memory capacity is disturbed in depressive patients, and it is important to reveal the effects of antidepressant drugs on cognitive function in depressive patients with memory problems. Citalopram, a selective serotonin reuptake inhibitor (SSRI), is one of the most widely used drugs for the treatment of disorders related to serotonergic dysfunction like depression and anxiety. Contradictory findings exist regarding the effects of SSRIs on memory. The aim of this study is to investigate whether citalopram affects memory in various models of learning and memory tasks in rats. Citalopram (at 20 and 50 mg/kg) significantly shortened the retention latency in the passive avoidance test and prolonged the transfer latency on the second day at 10 and 50 mg/kg doses in the elevated plus-maze test. Citalopram also significantly increased the number of errors (at the 10 mg/kg dose) and prolonged the latency values compared to the control group in both reference and working memory trials in the three-panel runway test. Citalopram also impaired reference memory trials of animals at the 20 mg/kg dose. In conclusion, citalopram impaired cognitive performance in passive avoidance, elevated plus-maze and three-panel runway tasks in naive rats. These effects might be related to serotonergic and nitrergic mechanisms, which need to be investigated in further studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号