首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   5篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   11篇
  2014年   8篇
  2013年   13篇
  2012年   11篇
  2011年   8篇
  2010年   13篇
  2009年   11篇
  2008年   15篇
  2007年   10篇
  2006年   15篇
  2005年   12篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1976年   1篇
  1966年   1篇
排序方式: 共有183条查询结果,搜索用时 31 毫秒
111.
Irpex lacteus was genetically transformed using an laccase expression vector to get increased laccase producing strains. Stable integration of the vector was confirmed by PCR using the vector-specific primers, and the transformants showed increased laccase activities. When the transformants were grown with several endocrine disrupting chemicals, laccase activity of each transformant was induced up to six times higher than that of the wild type. They showed increased degrading activities against EDCs as well as increased removal rates of estrogenic activities generated by the EDCs than the wild type, and the laccase expression was increased during the degradations of the EDCs.  相似文献   
112.
113.
114.
115.
hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.  相似文献   
116.
This study investigated the immune-modulatory effects of human bone marrow-derived mesenchymal stem cells (hBMSCs) on human Th17 cell function through the CD39-mediated adenosine-producing pathway. The suppressive effects of hBMSCs were evaluated by assessing their effects on the proliferation of Th17 cells and the secretion of interferon (IFN)-γ and interleukin (IL)-17A by Th17 cells with or without anti-CD39 treatment. Changes in CD39 and CD73 expression on the T cells with or without co-culture of hBMSCs were evaluated by flow cytometry. hBMSCs effectively suppressed the proliferation of Th17 cells and the secretion of both IL-17A and IFN-γ from Th17 cells using by both flow cytometry and ELISA, while anti-CD39 treatment significantly reduced the inhibitory effects of hBMSCs on the proliferation and secretion of the Th17 cells. The hBMSCs induced increased expression of the CD39 and CD73 on T cells correlated with the suppressive function of hBMSCs, which was accompanied by increased adenosine production. Our data suggests that hBMSCs can effectively suppress immune responses of the Th17 cells via the CD39-CD73-mediated adenosine-producing pathway.  相似文献   
117.
118.
119.
The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair.  相似文献   
120.
Ten strains of marine bacteria (SCH0401–SCH0410) were isolated from Ayajin, the east coast of South Korea. In spectrophotometer based chemotaxis assay the ethyl acetate extract (300 μg) of SCH0402 decreased the optical density (OD) of the motile target strains SCH0401, SCH0402, SCH0407 and SCH0408 by two to six times when compared to control. Tributyltin oxide (TBTO) decreased the OD of all target strains by only two times. The most active strain SCH0402 was identified as Shewanella oneidensis by using 16S rDNA gene sequence analysis. Similarly, the target motile strains SCH0401, SCH0402, SCH0407 and SCH0408 were identified as Alteromonas marina, Shewanella oneidensis, Roseobacter gallaeciensis and Bacillus atrophaeus, respectively. The growth inhibition zone produced by the test bacterial extracts against the target strains were three to eight times smaller when compared to that of TBTO. Even though, SCH0402 showed six times weaker antibacterial activity, the repellent activity was three times stronger than TBTO. Therefore, the higher negative chemotactic activity would be better to select eco-friendly antifouling compounds than the other antibacterial activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号