首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   17篇
  国内免费   1篇
  188篇
  2022年   3篇
  2021年   4篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   5篇
  2012年   11篇
  2011年   13篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1992年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   7篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1947年   2篇
  1946年   1篇
  1944年   1篇
  1942年   1篇
  1940年   3篇
  1939年   3篇
  1936年   1篇
  1935年   2篇
  1934年   2篇
  1933年   3篇
  1932年   2篇
排序方式: 共有188条查询结果,搜索用时 8 毫秒
31.
Measurements of plasma rotation and electric field are crucial for the study of plasma confinement and transport. The present paper is devoted to experimental observations of poloidal asymmetry in perpendicular plasma rotation with correlation reflectometry on TEXTOR. Published in Russian in Fizika Plazmy, 2008, Vol. 34, No. 9, pp. 798–802. The text was submitted by the authors in English.  相似文献   
32.
Headache is the most common symptom associated with air pollution, but little is understood about the underlying mechanism. Nasal administration of environmental irritants activates the trigeminovascular system by a TRPA1-dependent process. This report addresses questions about the anatomical pathway involved and the function of TRP channels in this pathway. TRPV1 and TRPA1 are frequently co-localized and interact to modulate function in sensory neurons. We demonstrate here that resiniferatoxin ablation of TRPV1 expressing neurons significantly reduces meningeal blood flow responses to nasal administration of both TRPV1 and TRPA1 agonists. Accordingly resiniferatoxin also significantly reduces TRPV1 and CGRP immunostaining and TRPV1 and TRPA1 message levels in trigeminal ganglia. Sensory neurons of the trigeminal ganglia innervate the nasal epithelium and the meninges, but the mechanism and anatomical route by which nasal administration evokes meningeal vasodilatation is unclear. Double retrograde labeling from the nose and meninges reveals no co-localization of fluorescent label, however nasal and meningeal labeled cells are located in close proximity to each other within the trigeminal ganglion. Our data demonstrate that TRPV1 expressing neurons are important for TRPA1 responses in the nasal-meningeal pathway. Our data also suggest that the nasal-meningeal pathway is not primarily by axon reflex, but may instead result from intraganglionic transmission.  相似文献   
33.
The high resistance lobster axon appears to be very leaky under voltage clamp in sucrose gap because of a parallel leakage current. The parallel current rectifies and depends on holding potential.  相似文献   
34.
Aminopyridines are known to block potassium (K) currents in excitable membranes in a manner dependent upon membrane potential, such that the block is relieved by depolarization and restored upon repolarization. In the present study, the effects of aminopyridines on voltage-dependent potassium (K) channels were examined in internally perfused, voltage-clamped squid giant axons. The time course of block restoration after conditioning depolarization was found to be modulated by membrane electric field, K-channel gating, and external cations. Depolarized holding potentials accelerated block restoration without altering steady-state block levels, suggesting that the voltage dependence of block restoration may be related to K channel gating rather than drug binding per se. In support of this notion, low external calcium concentration, which shifts the voltage dependence of K-channel gating to more negative potentials, also accelerated block restoration. Conversely, the relationship between the rate of block restoration and membrane holding potential was shifted in the depolarizing direction by phloretin, an agent that shifts the dependence of K-channel opening on membrane potential in a similar manner. Modification of K-channel gating also was found to alter the rate of block restoration. Addition of internal zinc or internal treatment with glutaraldehyde slowed the time course of both K-channel activation and aminopyridine block restoration. Aminopyridines also were found to interact in the K channel with external Cs+, NH4+, and Rb+, each of which slowed aminopyridine block restoration. Our results suggest that aminopyridines enter and occlude K channels, and that the availability of the binding site may be modulated by channel gating such that access is limited by the probability of the channel reaching an intermediate closed state at the resting potential.  相似文献   
35.
Influenza is a major cause of morbidity and mortality. Despite vaccination, many elderly recipients do not develop a protective antibody response. To determine whether Human Leukocyte Antigen (HLA) alleles modulate seroprotection to influenza, a cohort of HLA class II-typed high-risk vaccine recipients was investigated. Haemagglutinin inhibition (HAI) titres were measured 14–40 days post-subunit vaccination. Seroprotection was defined as HAI titres reaching 40 or greater for all three vaccine strains. HLA-DRB1*04∶01 and HLA-DPB1*04∶01 alleles were detected at higher frequencies in seroprotected compared with non-seroprotected individuals. Thus, the presence of certain HLA class II alleles may determine the magnitude of antibody responses to influenza vaccination.  相似文献   
36.
Key to our understanding of the mechanisms underlying the process of speciation is the determination of the nature of the barriers to gene flow between related taxa. Species that show zero gene flow in sympatry or parapatry are of little use in this respect. In the present study, we used two closely‐related species of large house spider, Tegenaria saeva and Tegenaria gigantea, which hybridize to a limited extent along a natural contact zone in southern Britain. The species are apparently indistinguishable with respect to habitat utilization and phenology. Laboratory crosses using individuals from both allopatric and parapatric populations suggest that, although male and female courtship, as well as web and cuticular‐borne pheromones, are conserved between the species, mechanical difficulties are experienced during interspecific copulation. Copulation bouts are, on average, significantly shorter during interspecific matings because of these difficulties, and are probably not sufficiently long for effective sperm transfer to take place. In the two cases of successful interspecific crossing, and in subsequent F1 and backcross generations, there are few indications of differential fertility, fecundity or viability, suggesting little post‐zygotic incompatibility. The high success rate of crosses between F1 hybrids and both parental species underlines the principally mechanical barrier to gene flow between these taxa. Once this is breached, there appears to be little impediment to continuing introgression, which could, in some geographical areas at least, ultimately lead to the fusion of the two species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 355–367.  相似文献   
37.
The purpose of this study was to investigate whether artificial neural networks (ANN) are able to decode participants’ conscious experience perception from brain activity alone, using complex and ecological stimuli. To reach the aim we conducted pattern recognition data analysis on fMRI data acquired during the execution of a binocular visual rivalry paradigm (BR). Twelve healthy participants were submitted to fMRI during the execution of a binocular non-rivalry (BNR) and a BR paradigm in which two classes of stimuli (faces and houses) were presented. During the binocular rivalry paradigm, behavioral responses related to the switching between consciously perceived stimuli were also collected. First, we used the BNR paradigm as a functional localizer to identify the brain areas involved the processing of the stimuli. Second, we trained the ANN on the BNR fMRI data restricted to these regions of interest. Third, we applied the trained ANN to the BR data as a ‘brain reading’ tool to discriminate the pattern of neural activity between the two stimuli. Fourth, we verified the consistency of the ANN outputs with the collected behavioral indicators of which stimulus was consciously perceived by the participants. Our main results showed that the trained ANN was able to generalize across the two different tasks (i.e. BNR and BR) and to identify with high accuracy the cognitive state of the participants (i.e. which stimulus was consciously perceived) during the BR condition. The behavioral response, employed as control parameter, was compared with the network output and a statistically significant percentage of correspondences (p-value <0.05) were obtained for all subjects. In conclusion the present study provides a method based on multivariate pattern analysis to investigate the neural basis of visual consciousness during the BR phenomenon when behavioral indicators lack or are inconsistent, like in disorders of consciousness or sedated patients.  相似文献   
38.
Past geological and climatological processes shape extant biodiversity. In the Hawaiian Islands, these processes have provided the physical environment for a number of extensive adaptive radiations. Yet, single species that occur throughout the islands provide some of the best cases for understanding how species respond to the shifting dynamics of the islands in the context of colonization history and associated demographic and adaptive shifts. Here, we focus on the Hawaiian happy-face spider, a single color-polymorphic species, and use mitochondrial and nuclear allozyme markers to examine (1) how the mosaic formation of the landscape has dictated population structure, and (2) how cycles of expansion and contraction of the habitat matrix have been associated with demographic shifts, including a "quantum shift" in the genetic basis of the color polymorphism. The results show a marked structure among populations consistent with the age progression of the islands. The finding of low genetic diversity at the youngest site coupled with the very high diversity of haplotypes on the slightly older substrates that are highly dissected by recent volcanism suggests that the mosaic structure of the landscape may play an important role in allowing differentiation of the adaptive color polymorphism.  相似文献   
39.
The human D3 dopamine receptor can activate G-protein-coupled inward rectifier potassium channels (GIRKs), inhibit P/Q-type calcium channels, and inhibit spontaneous secretory activity in AtT-20 neuroendocrine cells (Kuzhikandathil, E.V., W. Yu, and G.S. Oxford. 1998. Mol. Cell. Neurosci. 12:390-402; Kuzhikandathil, E.V., and G.S. Oxford. 1999. J. Neurosci. 19:1698-1707). In this study, we evaluate the role of GIRKs in the D3 receptor-mediated inhibition of secretory activity in AtT-20 cells. The absence of selective blockers for GIRKs has precluded a direct test of the hypothesis that they play an important role in inhibiting secretory activity. However, the tetrameric structure of these channels provides a means of disrupting endogenous GIRK function using a dominant negative approach. To develop a dominant-negative GIRK mutant, the K(+) selectivity amino acid sequence -GYG- in the putative pore domain of the human GIRK2 channels was mutated to -AAA-, -GLG-, or -GFG-. While the mutation of -GYG- to -GFG- did not affect channel function, both the -AAA- and -GLG- GIRK2 mutants were nonfunctional. This suggests that the aromatic ring of the tyrosine residue rather than its hydroxyl group is involved in maintaining the pore architecture of human GIRK2 channels. When expressed in AtT-20 cells, the nonfunctional AAA-GIRK2 and GLG-GIRK2 acted as effective dominant-negative mutants and significantly attenuated endogenous GIRK currents. Furthermore, these dominant-negative mutants interfered with the D3 receptor-mediated inhibition of secretion in AtT-20 cells, suggesting they are centrally involved in the signaling pathway of this secretory response. These results indicate that dominant-negative GIRK mutants are effective molecular tools to examine the role of GIRK channels in vivo.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号