首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2964篇
  免费   289篇
  3253篇
  2023年   19篇
  2022年   26篇
  2021年   71篇
  2020年   40篇
  2019年   54篇
  2018年   43篇
  2017年   33篇
  2016年   49篇
  2015年   84篇
  2014年   129篇
  2013年   126篇
  2012年   191篇
  2011年   150篇
  2010年   110篇
  2009年   92篇
  2008年   137篇
  2007年   146篇
  2006年   102篇
  2005年   99篇
  2004年   95篇
  2003年   103篇
  2002年   102篇
  2001年   62篇
  2000年   54篇
  1999年   49篇
  1998年   28篇
  1997年   25篇
  1996年   36篇
  1995年   25篇
  1994年   39篇
  1993年   22篇
  1992年   46篇
  1991年   50篇
  1990年   43篇
  1989年   32篇
  1988年   40篇
  1987年   37篇
  1986年   31篇
  1985年   35篇
  1984年   31篇
  1983年   38篇
  1982年   29篇
  1981年   27篇
  1979年   39篇
  1978年   25篇
  1977年   25篇
  1976年   21篇
  1975年   30篇
  1974年   29篇
  1973年   28篇
排序方式: 共有3253条查询结果,搜索用时 15 毫秒
151.
We describe an improved assay for platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) using HPLC-tandem mass spectrometry (LC-MS/MS). The present method can readily detect as little as 1 pg (1.9 fmol) of PAF, a significant improvement over previously described LC-MS/MS methods, and gives a linear response up to 1,000 pg of PAF. Our method also overcomes the artifacts from isobaric lipids that have limited the usefulness of certain existing LC-MS/MS assays for PAF. In the course of these studies, we detected three novel lipid species in human neutrophils. One of the novel lipids appears to be a new molecular species of PAF, and the other two have chromatographic and mass spectrometric properties consistent with stearoyl-formyl-glycerophosphocholine and oleoyl-formyl-glycerophosphocholine. These observations identify previously unknown potential interferences in the measurement of PAF by LC-MS/MS. Moreover, our data suggest that the previously described palmitoyl-formyl-glycerophosphocholine is not unique but rather is a member of a new and poorly understood family of formylated lipids.  相似文献   
152.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.  相似文献   
153.
Human Class I HLA antigens (HLA-A,B,C) were isolated by immune precipitation from cells labelled with 32P, [35S]methionine or 125I (by lactoperoxidase-catalysed cell-surface iodination) and were analysed using both one- and two-dimensional electrophoretic systems. In several B-lymphoblastoid cell lines and in human peripheral blood lymphocytes the electrophoretic mobility of the 32P-labelled HLA-A,B,C heavy chains consistently differed from that of molecules labelled by other means. Thus the 32P-labelled heavy chains appeared to be larger and to possess a more acidic pI than did heavy chains labelled with [35S]methionine or 125I, or identified by Coomassie Blue staining. Phosphatase treatment of immunoprecipitates, under conditions where 32P-labelled antigens were shown to be dephosphorylated, did not affect the mobilities of the [35S]methionine-labelled heavy chains. On glycosidase treatment, the positions of the 32P-labelled heavy chains were affected by neuraminidase but not by endo-beta-N-acetylglucosaminidase H. These results imply that phosphorylated HLA-A,B,C antigens comprise only a small proportion (relative to the total cellular HLA-A,B,C antigens) of the biosynthetically mature molecules. The possible significance of such heterogeneity is discussed.  相似文献   
154.
Osteoactivin (OA) is a novel glycoprotein that is highly expressed during osteoblast differentiation. Using Western blot analysis, our data show that OA protein has two isoforms, one is transmembranous and the other is secreted into the conditioned medium of primary osteoblasts cultures. Fractionation of osteoblast cell compartments showed that the mature, glycosylated OA isoform of 115 kDa is found in the membranous fraction. Both OA isoforms (secreted and transmembrane) are found in the cytoplasmic fraction of osteoblasts. Overexpression of EGFP-tagged OA in osteoblasts showed that OA protein accumulates into vesicles for transportation to the cell membrane. We examined OA protein production in primary osteoblast cultures and found that OA is maximally expressed during the third week of culture (last stage of osteoblast differentiation). Glycosylation studies showed that OA isoform of 115 kDa is highly glycosylated. We also showed that retinoic acid (RA) stimulates the mannosylation of OA protein. In contrast, tunicamycin (TM) strongly inhibited N-glycans incorporation into OA protein. The functional role of the secreted OA isoform was revealed when cultures treated with anti-OA antibody, showed decreased osteoblast differentiation compared to untreated control cultures. Gain-of-function in osteoblasts using the pBABE viral system showed that OA overexpression in osteoblast stimulated their differentiation and function. The availability of a naturally occurring mutant mouse with a truncated OA protein provided further evidence that OA is an important factor for terminal osteoblast differentiation and mineralization. Using bone marrow mesenchymal cells derived from OA mutant and wild-type mice and testing their ability to differentiate into osteoblasts showed that differentiation of OA mutant osteoblasts was significantly reduced compared to wild-type osteoblasts. Collectively, our data suggest that OA acts as a positive regulator of osteoblastogenesis.  相似文献   
155.
Skeletal muscle phosphorylase kinase (PhK) is a Ca2+-dependent enzyme complex, (αβγδ)4, with the δ subunit being tightly bound endogenous calmodulin (CaM). The Ca2+-dependent activation of glycogen phosphorylase by PhK couples muscle contraction with glycogen breakdown in the “excitation-contraction-energy production triad.” Although the Ca2+-dependent protein-protein interactions among the relevant contractile components of muscle are well characterized, such interactions have not been previously examined in the intact PhK complex. Here we show that zero-length cross-linking of the PhK complex produces a covalent dimer of its catalytic γ and CaM subunits. Utilizing mass spectrometry, we determined the residues cross-linked to be in an EF hand of CaM and in a region of the γ subunit sharing high sequence similarity with the Ca2+-sensitive molecular switch of troponin I that is known to bind actin and troponin C, a homolog of CaM. Our findings represent an unusual binding of CaM to a target protein and supply an explanation for the low Ca2+ stoichiometry of PhK that has been reported. They also provide direct structural evidence supporting co-evolution of the coordinate regulation by Ca2+ of contraction and energy production in muscle through the sharing of a common structural motif in troponin I and the catalytic subunit of PhK for their respective interactions with the homologous Ca2+-binding proteins troponin C and CaM.  相似文献   
156.
157.
Tissue factor (TF) serving as the receptor for coagulation factor VII (FVII) initiates the extrinsic coagulation pathway. We previously demonstrated that progesterone increases TF, coagulation and invasion in breast cancer cell lines. Herein, we investigated if tissue factor pathway inhibitor (TFPI) could down-regulate progesterone-increased TF activity in these cells. Classically, TFPI redistributes TF-FVII-FX-TFPI in an inactive quaternary complex to membrane associated lipid raft regions. Herein, we demonstrate that TF increased by progesterone is localized to the heavy membrane fraction, despite progesterone-increased coagulation originating almost exclusively from lipid raft domains, where TF levels are extremely low. The progesterone increase in coagulation is not a rapid effect, but is progesterone receptor (PR) dependent and requires protein synthesis. Although a partial relocalization of TF occurs, TFPI does not require the redistribution to lipid rafts to inhibit coagulation or invasion. Inhibition by TFPI and anti-TF antibodies in lipid raft membrane fractions confirmed the dependence on TF for progesterone-mediated coagulation. Through the use of pathway inhibitors, we further demonstrate that the TF up-regulated by progesterone is not coupled to the progesterone increase in TF-mediated coagulation. However, the progesterone up-regulated TF protein may be involved in progesterone-mediated breast cancer cell invasion, which TFPI also inhibits.  相似文献   
158.
159.
RseA sequesters RpoE (σ(E)) to the inner membrane of Escherichia coli when envelope stress is low. Elevated envelope stress triggers RseA cleavage by the sequential action of two membrane proteases, DegS and RseP, releasing σ(E) to activate an envelope stress reducing pathway. Revertants of a ΔdegP ΔbamB strain, which fails to grow at 37°C due to high envelope stress, harbored mutations in the rseA and rpoE genes. Null and missense rseA mutations constitutively hyper-activated the σ(E) regulon and significantly reduced the major outer membrane protein (OMP) levels. In contrast, a novel rpoE allele, rpoE3, resulting from the partial duplication of the rpoE gene, increased σ(E) levels greater than that seen in the rseA mutant background but did not reduce OMP levels. A σ(E)-dependent RybB::LacZ construct showed only a weak activation of the σ(E) pathway by rpoE3. Despite this, rpoE3 fully reversed the growth and envelope vesiculation phenotypes of ΔdegP. Interestingly, rpoE3 also brought down the modestly activated Cpx envelope stress pathway in the ΔdegP strain to the wild type level, showing the complementary nature of the σ(E) and Cpx pathways. Through employing a labile mutant periplasmic protein, AcrA(L222Q), it was determined that the rpoE3 mutation overcomes the ΔdegP phenotypes, in part, by activating a σ(E)-dependent proteolytic pathway. Our data suggest that a reduction in the OMP levels is not intrinsic to the σ(E)-mediated mechanism of lowering envelope stress. They also suggest that under extreme envelope stress, a tight homeostasis loop between RseA and σ(E) may partly be responsible for cell death, and this loop can be broken by mutations that either lower RseA activity or increase σ(E) levels.  相似文献   
160.
Potential of real-time measurement of GFP-fusion proteins   总被引:1,自引:0,他引:1  
Building on the basic design concepts of Randers-Eichhorn [Biotechnol. Bioeng. 55 (1997) 921], an on-line, real-time robust, steam sterilisable optical sensor for monitoring green fluorescent protein (GFP) has been developed. A general cloning vector for fusion expression proteins was constructed, allowing expression of both GFP and the target protein as a fusion. Cultivations were carried out at the 20l scale with the signal from the sensor being relayed directly to the control system of the bioreactors. The production of GFP was then measured on-line, the signal was interfaced directly with other controlling parameters, thereby allowing the microbial process to be controlled directly based on recombinant protein expression. A positive expression correlation between on-line and off-line data was obtained. Protein accretion measured off-line was quantified using both LC-MS and plate reader assays. The potential of such a sensor for many aspects of process development is considerable and we have developed a working system which allows the optimisation of production conditions, for example, linking pH control directly to the fusion protein. Results are also presented that illustrate GFP does not alter the cultivation characteristics of the target protein when compared to the native construct. Whether GFP expressed as a fusion influences the solubility of the target protein is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号