首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   733篇
  免费   66篇
  2023年   3篇
  2022年   5篇
  2021年   17篇
  2020年   7篇
  2019年   15篇
  2018年   14篇
  2017年   16篇
  2016年   12篇
  2015年   44篇
  2014年   50篇
  2013年   50篇
  2012年   82篇
  2011年   74篇
  2010年   37篇
  2009年   30篇
  2008年   45篇
  2007年   47篇
  2006年   50篇
  2005年   44篇
  2004年   45篇
  2003年   47篇
  2002年   27篇
  2001年   6篇
  2000年   2篇
  1999年   9篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1975年   1篇
  1965年   1篇
  1964年   1篇
  1962年   2篇
  1957年   1篇
排序方式: 共有799条查询结果,搜索用时 500 毫秒
701.
Rice (Oryza sativa) is the staple food for over half the world''s population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a ± stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.Paddy rice (Oryza sativa) is particularly effective, compared to other cereals, at accumulating arsenic (As) in shoot and grain (Williams et al., 2007b). Rice is the staple food for over half the world''s population (Fageria, 2007) and rice represents a significant dietary source of inorganic As, a class 1, nonthreshold carcinogen, particularly in Southeast Asia (Meharg et al., 2009). Inorganic As levels in rice grain are problematic even where soil As is at background levels, derived from geogenic sources (Lu et al., 2009; Meharg et al., 2009). However, widespread pollution of paddy soils with As, leading to further elevation of grain As, has occurred in some regions due to base and precious mining (Liao et al., 2005; Zhu et al., 2008), irrigation of paddies with As-elevated groundwaters (e.g. Meharg and Rahman, 2003; Williams et al., 2006), and the use of arsenical pesticides (Williams et al., 2007a). Unlike other cereal grains, paddy rice cultivation is dependent of soils being anaerobic, and it is this anoxia that gives rise to elevated As concentrations in the plant. Anaerobic soil conditions lead to the mobilization of As as arsenite, where under aerobic systems arsenate dominates (Xu et al., 2008). Arsenite is efficiently assimilated by rice roots through silicic acid transport pathway (Ma et al., 2008).Knowledge of As metabolism and partitioning within plants, particularly rice, is still developing rapidly (Zhao et al., 2009). Several studies have now shown that As in rice vegetative tissue and grain is predominantly speciated as inorganic As and the methylated species dimethylarsinic acid (DMA), with variable, though low, levels of monomethyl arsonic acid (MMA; Abedin et al., 2002a; Williams et al., 2005, 2006; Norton et al., 2009). Arsenate is an analog of phosphate and competes with phosphate for rice root uptake (Abedin et al., 2002a) while arsenite is taken up by rice roots via silicic acid transporters (Ma et al., 2008). Abedin et al. (2002b) demonstrated that the methylated species DMA and MMA are also taken up by rice plants although at a much slower rate than inorganic As, with the protonated neutral forms also transported through silicic acid pathway (Li et al., 2009). Arsenate is reduced to arsenite within the rice root (Xu et al., 2008; Zhao et al., 2009), which then enters the xylem via a silicic acid/arsenite effluxer (Ma et al., 2008; Zhao et al., 2009). Arsenite may be detoxified through complexation with thiol-rich peptides including phytochelatins (PCs) and glutathione followed by sequestration into vacuoles (Bleeker et al., 2006; Raab et al., 2007b; Zhao et al., 2009). Raab et al. (2007a) found that while methylated As species are taken up by rice roots much less efficiently than inorganic species, they appear to be translocated within the plant more efficiently. The comparative contributions of xylem and phloem transport, in translocation of As to the grain, are unknown.The main species within rice grain, along with DMA, are inorganic As, particularly arsenite, which may be complexed with thiols (Williams et al., 2005; Lombi et al., 2009). Nutrients are unloaded into the grain from the ovular vascular trace (OVT) into the nucellar tissue and from there are uploaded, via the apoplast into the filial tissue (the aleurone and the endosperm; Krishnan and Dayanandan, 2003). Lombi et al. (2009) recently suggested that this may represent a physiological barrier that As species cross with differential efficiency. However, the transport and unloading of As to/into the grain, which are key processes in terms of human exposure to this contaminant, are far from being fully understood.This study investigated the differential efficiency with which important As species are translocated and unloaded into the rice grain and the comparative contributions of phloem and xylem transport. Rice panicles were excised below the flag leaf node during grain development, 10 DPA, and treated to a hydroponically administered 48-h pulse of arsenite, arsenate, arsenite glutathione, or DMA. Total As concentrations in flag leaf, grain, and husk samples for each treatment were quantified by inductively coupled plasma mass spectroscopy (ICP-MS), and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy (XANES) analysis. To evaluate the contributions of phloem versus xylem transport, a stem-girdling treatment was applied, using steam to destroy phloem cells in a second set of panicles prior to a pulse of either DMA or arsenite. The spatial unloading of As species into the developing grain was examined by synchrotron x-ray fluorescence (XRF) mapping, and fluorescence microtomography for the DMA and arsenite treatments.  相似文献   
702.
The antimicrobial activity of poly(2-methyl-1,3-oxazoline)s (PMOX) with the antimicrobial N,N-dimethyldodecylammonium (DDA) end group is greatly dependent on the nature of the group at the distal end of the polymer, the satellite group. Three comparable PMOX with a DDA end group and different satellite groups (methyl, decyl, hexadecyl) were investigated with respect to the reasons for the huge differences in their biocidal behavior. Static light scattering (SLS) and pulsed field gradient diffusion NMR measurements revealed that the samples show comparable aggregation conduct, thus, not being responsible for the varying biological activity. Experiments using different liposomal systems as models for bacterial cell membranes have been performed. It was found that differential interactions between the respective polymers and the phospholipid membranes constitute the reason for the varying effectiveness observed in antimicrobial susceptibility determinations.  相似文献   
703.
704.
Diamond-Blackfan anemia (DBA), a congenital bone-marrow-failure syndrome, is characterized by red blood cell aplasia, macrocytic anemia, clinical heterogeneity, and increased risk of malignancy. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital anomalies that are present in ~30%–50% of patients. The disease has been associated with mutations in four ribosomal protein (RP) genes, RPS19, RPS24, RPS17, and RPL35A, in about 30% of patients. However, the genetic basis of the remaining 70% of cases is still unknown. Here, we report the second known mutation in RPS17 and probable pathogenic mutations in three more RP genes, RPL5, RPL11, and RPS7. In addition, we identified rare variants of unknown significance in three other genes, RPL36, RPS15, and RPS27A. Remarkably, careful review of the clinical data showed that mutations in RPL5 are associated with multiple physical abnormalities, including craniofacial, thumb, and heart anomalies, whereas isolated thumb malformations are predominantly present in patients carrying mutations in RPL11. We also demonstrate that mutations of RPL5, RPL11, or RPS7 in DBA cells is associated with diverse defects in the maturation of ribosomal RNAs in the large or the small ribosomal subunit production pathway, expanding the repertoire of ribosomal RNA processing defects associated with DBA.  相似文献   
705.

Background

Mitochondrial DNA (mtDNA) polymorphism is a possible factor contributing to the maternal parent-of-origin effect in multiple sclerosis (MS) susceptibility.

Methods and Findings

In order to investigate the role of mtDNA variations in MS, we investigated six European MS case-control cohorts comprising >5,000 individuals. Three well matched cohorts were genotyped with seven common, potentially functional mtDNA single nucleotide polymorphisms (SNPs). A SNP, nt13708 G/A, was significantly associated with MS susceptibility in all three cohorts. The nt13708A allele was associated with an increased risk of MS (OR = 1.71, 95% CI 1.28–2.26, P = 0.0002). Subsequent sequencing of the mtDNA of 50 individuals revealed that the nt13708 itself, rather than SNPs linked to it, was responsible for the association. However, the association of nt13708 G/A with MS was not significant in MS cohorts which were not well case-control matched, indicating that the significance of association was affected by the population structure of controls.

Conclusions

Taken together, our finding identified the nt13708A variant as a susceptibility allele to MS, which could contribute to defining the role of the mitochondrial genome in MS pathogenesis.  相似文献   
706.
A new series of amino-acetonitrile derivatives (AAD) have been discovered that exhibit high anthelmintic activity against parasitic nematode species such as Haemonchus contortus and Trichostrongylus colubriformis. Significantly, these compounds also demonstrate activity against nematode strains resistant to the currently available broad-spectrum anthelmintics. The discovery, synthesis, structure–activity relationship and biological results are presented.  相似文献   
707.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding beta-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsOmegaGm and Pseudomonas sp. strain HRechOmegaKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatOmegaKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a beta-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   
708.
The ubiquitin-proteasome system is the two sequential labeling and degradation system that accounts for the degradation of 80-90% of all intracellular proteins. Based on the diversity of its substrates, it is integrated in many different biological processes, especially inflammation and cell proliferation. Given the significance of these two processes for primary atherosclerosis and restenosis, the ubiquitin-proteasome system may be an amendable target in cardiovascular therapy. This review provides background information on the ubiquitin-proteasome system, currently available data on its involvement in cardiovascular diseases, and a future perspective on the targeted use proteasome inhibitors, including drug-eluting stents.  相似文献   
709.
Tracheal cytotoxin (TCT) was originally described as the minimal effector that was able to reproduce the cytotoxic response of Bordetella pertussis on ciliated epithelial cells. This molecule triggers pleiotropic effects such as immune stimulation or slow-wave sleep modulation. Further characterization identified TCT as a specific diaminopimelic acid (DAP)-containing muropeptide, GlcNAc-(anhydro)MurNAc-L-Ala-D-Glu-mesoDAP-D-Ala. Here, we show that the biological activity of TCT depends on Nod1, an intracellular sensor of bacterial peptidoglycan. However, Nod1-dependent detection of TCT was found to be host specific, as human Nod1 (hNod1) poorly detected TCT, whereas mouse Nod1 (mNod1) did so efficiently. More generally, hNod1 required a tripeptide (L-Ala-D-Glu-mesoDAP) for efficient sensing of peptidoglycan, whereas mNod1 detected a tetrapeptide structure (L-Ala-D-Glu-mesoDAP-D-Ala). In murine macrophages, TCT stimulated cytokine secretion and NO production through Nod1. Finally, in vivo, injection of the tetrapeptide structure in mice triggered a transient yet strong release of cytokines into the bloodstream and the maturation of macrophages, in a Nod1-dependent manner. This study thereby identifies Nod1 as the long sought after sensor of TCT in mammals.  相似文献   
710.
The risk for Alzheimer's disease (AD) is associated with lifestyle factors, especially cigarette smoking. In this study we investigated the influence of smoking on the serum levels of folic acid, LDL and HDL in AD patients, patients with minimal cognitive impairment (MCI) and patients with major depression. We investigated a total of n = 374 patients in the diagnostic categories:, AD: n = 272, MCI: n = 60, Major depression: n = 42. We found significantly lower HDL levels in smokers and previous smokers in comparison to non-smokers, p<0,05. The LDL: HDL ratio in smokers was significant higher (+20%) compared to previous smokers and non-smokers, p < 0.05. The mean levels of folic acid were statistically significant (p<0.05) lower (-24%) in smokers compared to non-smokers. Patients with MCI and Alzheimer;s disease (and also major depression) who are "smokers" show serum levels of HDL and folic acid that are known to be strong risk factors for vascular damage and increased risk for vascular brain damage and impaired cognitive function. Therefore cessation of smoking, substitution with folate or statin therapy of smoking patients with MCI or AD might be beneficial to slow down further cognitive decline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号