首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
  国内免费   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
31.
Li H  Outten CE 《Biochemistry》2012,51(22):4377-4389
Monothiol glutaredoxins (Grxs) with a signature CGFS active site and BolA-like proteins have recently emerged as novel players in iron homeostasis. Elegant genetic and biochemical studies examining the functional and physical interactions of CGFS Grxs in the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe have unveiled their essential roles in intracellular iron signaling, iron trafficking, and the maturation of Fe-S cluster proteins. Biophysical and biochemical analyses of the [2Fe-2S] bridging interaction between CGFS Grxs and a BolA-like protein in S. cerevisiae provided the first molecular-level understanding of the iron regulation mechanism in this model eukaryote and established the ubiquitous CGFS Grxs and BolA-like proteins as novel Fe-S cluster-binding regulatory partners. Parallel studies focused on Escherichia coli and human homologues for CGFS Grxs and BolA-like proteins have supported the studies in yeast and provided additional clues about their involvement in cellular iron metabolism. Herein, we review recent progress in uncovering the cellular and molecular mechanisms by which CGFS Grxs and BolA-like proteins help regulate iron metabolism in both eukaryotic and prokaryotic organisms.  相似文献   
32.
33.
We compared histochemical and immunohistochemical staining as well as fluorochrome labeling in murine bone specimens that were fixed with 10% neutral buffered formalin to those fixed with HistoChoice®. We showed that sections from undecalcified tibiae fixed for 4 h in HistoChoice® resulted in enhanced toluidine blue and Von Kossa histochemical staining compared to formalin fixation. HistoChoice® produced comparable or improved staining for alkaline phosphatase. Acid phosphatase localization was better in formalin fixed specimens, but osteoclasts were visuralized more easily in HistoChoice® fixed specimens. As expected, immunohistochemical labeling was antibody dependent; some antibodies labeled better in HistoChoice® fixed specimens while others were better in formalin fixed specimens. Toluidine blue, Von Kossa, and alkaline phosphatase staining of sections fixed for 12 h produced sections that were similar to 4 h fixed sections. Fixation for 12 h preserved acid phosphatase activity better. Increasing fixation to 12 h affected immunolocalization differentially. Bone sialoprotein labeling in HistoChoice® fixed specimens was comparable to formalin fixed samples. On the other hand, after 12 h formalin fixation, osteocalcin labeling was comparable to HistoChoice®. For most histochemical applications, fixing murine bone specimens for 4 h with HistoChoice® yielded superior staining compared to formalin fixation. If immunohistochemical localization is desired, however, individual antibodies must be tested to determine which fixation process retains antigenicity better. In addition, there was no detectable difference in the intensity of fluorochrome labeling using either fixative. Finally, fixation duration did not alter the intensity of labeling.  相似文献   
34.
35.
36.
37.
In this study, the functions of two established Fe-S cluster biogenesis pathways, Isc (iron-sulfur cluster) and Suf (sulfur mobilization), under aerobic and anaerobic growth conditions were compared by measuring the activity of the Escherichia coli global anaerobic regulator FNR. A [4Fe-4S] cluster is required for FNR activity under anaerobic conditions. An assay of the expression of FNR-dependent promoters in strains containing various deletions of the iscSUAhscBAfdx operon revealed that, under anaerobic conditions, FNR activity was reduced by 60% in the absence of the Isc pathway. In contrast, a mutant lacking the entire Suf pathway had normal FNR activity, although overexpression of the suf operon fully rescued the anaerobic defect in FNR activity in strains lacking the Isc pathway. Expression of the sufA promoter and levels of SufD protein were upregulated by twofold to threefold in Isc  strains under anaerobic conditions, suggesting that increased expression of the Suf pathway may be partially responsible for the FNR activity remaining in strains lacking the Isc pathway. In contrast, use of the O2-stable [4Fe-4S] cluster FNR variant FNR-L28H showed that overexpression of the suf operon did not restore FNR activity to strains lacking the Isc pathway under aerobic conditions. In addition, FNR-L28H activity was more impaired under aerobic conditions than under anaerobic conditions. The greater requirement for the Isc pathway under aerobic conditions was not due to a change in the rate of Fe-S cluster acquisition by FNR-L28H under aerobic and anaerobic conditions, as shown by 55Fe-labeling experiments. Using [35S]methionine pulse-chase assays, we observed that the Isc pathway, but not the Suf pathway, is the major pathway required for conversion of O2-inactivated apo-FNR into [4Fe-4S]FNR upon the onset of anaerobic growth conditions. Taken together, these findings indicate a major role for the Isc pathway in FNR Fe-S cluster biogenesis under both aerobic and anaerobic conditions.  相似文献   
38.
The plasmid-encoded pco copper resistance operon in Escherichia coli consists of seven genes that are expressed from two pco promoters in response to elevated copper; however, little is known about how they mediate resistance to excess environmental copper. Two of the genes encode the soluble periplasmic proteins PcoA and PcoC. We show here that inactivation of PcoC, and PcoA to a lesser extent, causes cells to become more sensitive to copper than wild-type nonresistant strains, consistent with a tightly coupled detoxification pathway. Periplasmic extracts show copper-inducible oxidase activity, attributed to the multicopper oxidase function of PcoA. PcoC, a much smaller protein than PcoA, binds one Cu(II) and exhibits a weak electronic transition characteristic of a type II copper center. ENDOR and ESEEM spectroscopy of Cu(II)-PcoC and the (15)N- and Met-CD(3)-labeled samples are consistent with a tetragonal ligand environment of three nitrogens and one aqua ligand "in the plane". A weakly associated S-Met and aqua are likely axial ligands. At least one N is a histidine and is likely trans to the in-plane aqua ligand. The copper chemistry of PcoC and the oxidase function of PcoA are consistent with the emerging picture of the chromosomally encoded copper homeostasis apparatus in the E. coli cell envelope [Outten, F. W., Huffman, D. L., Hale, J. A., and O'Halloran, T. V. (2001) J. Biol. Chem. 276, 30670-30677]. We propose a model for the plasmid system in which Cu(I)-PcoC functions in this copper efflux pathway as a periplasmic copper binding protein that docks with the multiple repeats of Met-rich domains in PcoA to effect oxidation of Cu(I) to the less toxic Cu(II) form. The solvent accessibility of the Cu(II) in PcoC may allow for metal transfer to other plasmid and chromosomal factors and thus facilitate removal of Cu(II) from the cell envelope.  相似文献   
39.
40.

Background  

Experimentally determined protein structures may contain errors and require validation. Conformational criteria based on the Ramachandran plot are mainly used to distinguish bet ween distorted and adequately refined models. While the readily available criteria are sufficient to detect totally wrong structures, establishing the more subtle differences between plausible structures remains more challenging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号