首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   21篇
  2022年   1篇
  2021年   9篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   18篇
  2014年   17篇
  2013年   26篇
  2012年   30篇
  2011年   28篇
  2010年   21篇
  2009年   12篇
  2008年   22篇
  2007年   18篇
  2006年   19篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   17篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   1篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1974年   1篇
  1972年   2篇
排序方式: 共有357条查询结果,搜索用时 31 毫秒
181.
182.
183.
184.
Bioaccumulation of paralytic shellfish toxins (PSTs) produced by the dinoflagellate Alexandrium ostenfeldii was investigated in the northern Baltic Sea. The study was based on the assumption that the toxins released during high magnitude blooms of A. ostenfeldii will accumulate in the biota at the bloom site, especially in bivalves. To test this, experiments with blue mussels (Mytilus trossulus) exposed to toxic A. ostenfeldii in field conditions were carried out together with a field survey aimed to quantify natural distribution of PSTs in the biota. As hypothesized, PSTs accumulated in the tissues of the blue mussels during the incubations. Toxins were also detected in natural bivalve communities at the bloom site, the highest toxin concentrations found in the small Cerastoderma glaucum individuals, exceeding the EC safety limit for shellfish consumption. Relatively high total toxin concentrations were also detected from fish (Perca fluviatilis). These are the first records of PST transfer in the food web of the northern Baltic Sea.  相似文献   
185.
Juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease) is the most common progressive neurodegenerative disorder of childhood. CLN3, the transmembrane protein underlying JNCL, is proposed to participate in multiple cellular events including membrane trafficking and cytoskeletal functions. We demonstrate here that CLN3 interacts with the plasma membrane-associated cytoskeletal and endocytic fodrin and the associated Na+, K+ ATPase. The ion pumping activity of Na+, K+ ATPase was unchanged in Cln3−/− mouse primary neurons. However, the immunostaining pattern of fodrin appeared abnormal in JNCL fibroblasts and Cln3−/− mouse brains suggesting disturbances in the fodrin cytoskeleton. Furthermore, the basal subcellular distribution as well as ouabain-induced endocytosis of neuron-specific Na+, K+ ATPase were remarkably affected in Cln3−/− mouse primary neurons. These data suggest that CLN3 is involved in the regulation of plasma membrane fodrin cytoskeleton and consequently, the plasma membrane association of Na+, K+ ATPase. Most of the processes regulated by multifunctional fodrin and Na+, K+ ATPase are also affected in JNCL and Cln3-deficiency implicating that dysregulation of fodrin cytoskeleton and non-pumping functions of Na+, K+ ATPase may play a role in the neuronal degeneration in JNCL.  相似文献   
186.
The functional response of a planktonic ciliate, Strombidium sp. feeding on the dinoflagellate Pfiesteria piscicida non-toxic zoospores (NTZ) was experimentally studied with four different prey concentrations (43–3153 cells ml−1). Data from direct observations (NTZ inside individual Strombidium sp.) was used to calculate predator–prey specific ingestion and clearance rates. The ingestion rates varied between 0.68 and 14.26 NTZ ind−1 h−1, and with the predator–prey specific handling time of 2.83 min the Umax was 21.18 NTZ ind−1 h−1. The increase in the prey concentration between approximately 700 and 3000 NTZ ml−1 did not increase the uptake of prey, and at the lowest Pfiesteria NTZ concentrations the feeding efficiency of Strombidium sp. was lowered, possibly indicating a situation of threshold feeding. When data from direct observations of ingested Pfiesteria NTZ were compared with values of total NTZ loss from the experimental water during the experiment, ingestion was found to represent only a fraction of the total NTZ loss in the presence of ciliates. This discrepancy was concluded to be due to other grazer related factors than actual ciliate grazing. The control of the initial growth of Pfiesteria community, in a pre-bloom situation, would require only a small ciliate abundance (less than 5 ml−1), but when the Pfiesteria NTZ are scarce, relatively more ciliates are needed to limit the population growth of the dinoflagellate community because of the apparent feeding threshold. It is concluded that the formation of non-toxic P. piscicida blooms require periods of low grazing pressure or a means to escape grazing.  相似文献   
187.
Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa. Moreover, population contraction–expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.  相似文献   
188.

Background

The NLRP (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing) family, also referred to as NALP family, is well known for its roles in apoptosis and inflammation. Several NLRPs have been indicated as being involved in reproduction as well.

Methodology

We studied, using the unique human gametes and embryo materials, the expression of the NLRP family in human gametes and preimplantation embryos at different developmental stages, and compared the expression levels between normal and abnormal embryos using real-time PCR.

Principal Findings

Among 14 members of the NLRP family, twelve were detected in human oocytes and preimplantation embryos, whereas seven were detected in spermatozoa. Eight NLRPs (NLRP4, 5, 8, 9, 11, 12, 13, and 14) showed a similar expression pattern: their expression levels were high in oocytes and then decreased progressively in embryos, resulting in a very low level in day 5 embryos. However, NLRP2 and NLRP7 showed a different expression pattern: their expression decreased from oocytes to the lowest level by day 3, but increased again by day 5. The expression levels of NLRP5, 9, and 12 were lower in day 1 abnormal embryos but higher in day3 and day5 arrested embryos, when compared with normal embryos at the same stages. NLRP7 was down-regulated in day 1 and day 5 abnormal embryos but over-expressed in day3 arrested embryos.

Conclusions

According to our results, different NLRPs possibly work in a stage-dependent manner during human preimplantation development.  相似文献   
189.
The effect of storage on chemical characteristics and CH4 yield (taking into account loss of VS during storage) of a mixture of grasses and ryegrass, ensiled as such (low solids content) and after drying (medium and high solids) with and without biological additive, were studied in field and laboratory trials. Up to 87% and 98% of CH4 yield was preserved with low solids grass (initial TS 15.6%) and high solids ryegrass (initial TS 30.4%), respectively, after storage for 6months, while under suboptimal conditions at most 37% and 52% of CH4 yield were lost. Loss in CH4 yield was mainly due to VS loss, presumably caused by secondary fermentation as also suggested by increasing pH during storage. Biological additive did not assist in preserving the CH4 yield.  相似文献   
190.
Ergosterol contents of six wood-rotting basidiomycetes were analyzed under different cultivation conditions. Four white-rot and two brown-rot fungi were cultivated in liquid synthetic medium with low nutrient nitrogen (2 mM) and 0.1% glucose, and ergosterol in mycelial biomasses were measured weekly for 35 days. The highest ergosterol content per fungal dry mass in the white-rot fungi was found in Phanerochaete chrysosporium being 2100 μg g−1, while in Ceriporiopsis subvermispora it was 1700 μg g−1, Phlebia radiata 700 μg g−1, and Physisporinus rivulosus 560 μg g−1. In brown-rot fungi the ergosterol content was in Poria placenta 2868 μg g−1 and in Gloeophyllum trabeum 3915 μg g−1. On agar media, P. chrysosporium and P. radiata reached the highest ergosterol value in 7 days, while in wood block cultures the ergosterol contents were quite stable. The conversion factors for ergosterol-to-fungal biomass varied from 48 and 243, which were lower than values for ascomycetous soil fungi reported in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号