首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   0篇
  2022年   3篇
  2021年   4篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   8篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有80条查询结果,搜索用时 171 毫秒
61.
Cardiopulmonary bypass (CPB) is associated with an inflammatory process that leads to lung injury. In this study, we hypothesized that inhaled nitric oxide (INO) possesses the ability to modulate CPB-induced inflammation. Fifteen male pigs were randomly divided into 3 groups: Sham, CPB+LPS (CPB and lipopolysaccharide), and CPB+LPS+INO. INO (20 parts per million) was administered for 24 h after anesthesia. CPB was performed for 90 min, and LPS was infused (1 microg/kg) after CPB. Bronchoalveolar lavage (BAL) fluid and blood were collected at T0 (before CPB), at 4 h, and at 24 h. At 24 h, BAL interleukin-8 (IL-8) levels were not increased as expected in the CPB+LPS group compared with the Sham group, but they were reduced significantly in the CPB+LPS+INO group. Cell hypo reactivity observed in the groups receiving LPS also seemed to downregulate endothelial nitric oxide synthase NOS protein expression relative to the Sham group. Nitrite and nitrate (NOx) concentrations were decreased significantly in the groups without INO. Moreover, animals treated with INO showed higher rates of pulmonary apoptosis compared with their respective controls. These results demonstrate that NOx production is reduced after CPB and that INO acts on the inflammatory process by diminishing neutrophils and their major chemoattractant, IL-8. INO also increases cell apoptosis in the lungs under inflammatory conditions, which may explain, in part, how it resolves pulmonary inflammation.  相似文献   
62.
Group III presynaptic metabotropic glutamate receptors (mGluRs) play a central role in regulating presynaptic activity through G-protein effects on ion channels and signal transducing enzymes. Like all Class C G-protein-coupled receptors, mGluR8 has an extended intracellular C-terminal domain (CTD) presumed to allow for modulation of downstream signaling. In a yeast two-hybrid screen of an adult rat brain cDNA library with the CTDs of mGluR8a and 8b (mGluR8-C) as baits, we identified sumo1 and four different components of the sumoylation cascade (ube2a, Pias1, Piasgamma, Piasxbeta) as interacting proteins. Binding assays using recombinant GST fusion proteins confirmed that Pias1 interacts not only with mGluR8-C but also with all group III mGluR CTDs. Pias1 binding to mGluR8-C required a region N-terminal to a consensus sumoylation motif and was not affected by arginine substitution of the conserved lysine 882 within this motif. Co-transfection of fluorescently tagged mGluR8a-C, sumo1, and enzymes of the sumoylation cascade into HEK293 cells showed that mGluR8a-C can be sumoylated in vivo. Arginine substitution of lysine 882 within the consensus sumoylation motif, but not other conserved lysines within the CTD, abolished in vivo sumoylation. Our results are consistent with post-translational sumoylation providing a novel mechanism of group III mGluR regulation.  相似文献   
63.
The serotonin transporter (SERT) mediates the re-uptake of released serotonin into presynaptic nerve terminals. Its activity is regulated by different mechanisms including protein kinase C (PKC) triggered internalization. Here, we used yeast 2-hybrid screening and cotransfection into 293 cells to identify a homologue of the myristoylated alanine-rich C kinase substrate (MARCKS), MacMARCKS, as a C-terminally interacting protein of SERT. Upon cotransfection with SERT, MacMARCKS caused a reduction in the maximal rate of [(3)H]serotonin uptake and reduced its down-regulation elicited by activation of PKC. Our data are consistent with MARCKS proteins regulating the plasma membrane dynamics of neurotransmitter transporters.  相似文献   
64.
Kebir MO  Kendall DA 《Biochemistry》2002,41(17):5573-5580
SecA performs a critical function in the recognition, targeting, and transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. In this study we investigate the substrate specificity of SecA, including the influence of the early mature region of the preprotein on SecA interactions, and the extent to which SecA recognizes targeting signals from different transport pathways. A series of fusion proteins were generated which involved the tandem expression of GST, signal peptide, and the first 30 residues from alkaline phosphatase. These were purified and evaluated for their ability to promote SecA ATPase activity. No significant difference in the stimulation of SecA-lipid ATPase activity between the synthetic wild-type alkaline phosphatase signal peptide and a fusion that also contains the first 30 residues of alkaline phosphatase was observed. The incorporation of sequence motifs in the mature region, which confer SecB dependence in vivo, had no impact on SecA activation in vitro. These results suggest that the early mature region of alkaline phosphatase does not affect the interactions between SecA and the signal peptide. Sec, Tat, and YidC signal peptide fusions were also assayed for their ability to stimulate SecA ATPase activity in vitro and further analyzed in vivo for the Sec dependence of the transport of the corresponding signal peptide mutants of alkaline phosphatase. Our results demonstrate that E. coli Sec signals give the highest level of SecA activation; however, SecA-signal peptide interactions in vitro are not the only arbiter of whether the preprotein utilizes the Sec pathway in vivo.  相似文献   
65.
We report on 4 patients (1 immunocompetent, 3 immunosuppressed) in whom visceral leishmaniasis had become unresponsive to (or had relapsed after) treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.  相似文献   
66.
Most cancer cells have high need for nicotinamide adenine dinucleotide (NAD+) to sustain their survival. This led to the development of inhibitors of nicotinamide (NAM) phosphoribosyltransferase (NAMPT), the rate-limiting NAD+ biosynthesis enzyme from NAM. Such inhibitors kill cancer cells in preclinical studies but failed in clinical ones. To identify parameters that could negatively affect the therapeutic efficacy of NAMPT inhibitors and propose therapeutic strategies to circumvent such failure, we performed metabolomics analyses in tumor environment and explored the effect of the interaction between microbiota and cancer cells. Here we show that tumor environment enriched in vitamin B3 (NAM) or nicotinic acid (NA) significantly lowers the anti-tumor efficacy of APO866, a prototypic NAMPT inhibitor. Additionally, bacteria (from the gut, or in the medium) can convert NAM into NA and thus fuel an alternative NAD synthesis pathway through NA. This leads to the rescue from NAD depletion, prevents reactive oxygen species production, preserves mitochondrial integrity, blunts ATP depletion, and protects cancer cells from death.Our data in an in vivo preclinical model reveal that antibiotic therapy down-modulating gut microbiota can restore the anti-cancer efficacy of APO866. Alternatively, NAphosphoribosyltransferase inhibition may restore anti-cancer activity of NAMPT inhibitors in the presence of gut microbiota and of NAM in the diet.Subject terms: Drug development, Cancer metabolism

  相似文献   
67.
Transverse aortic constriction provokes a pro-inflammatory reaction and results in cardiac hypertrophy. Endogenous ligands contribute to cardiac hypertrophy via toll-like receptor (TLR)-4 binding. A lack of TLR4 signaling diminishes hypertrophy and inflammation. Wild type mice undergoing aortic constriction respond to a lipopolysaccharide second-hit stimulus with hyperinflammation. The objective of this study was to assess whether other second-hit challenges utilizing TLR ligands provoke a comparable inflammatory reaction, and to find out whether this response is absent in TLR4 deficient mice. Assuming that cardiac stress alters the expression of pattern recognition receptors we analyzed the effects of transverse aortic constriction and second-hit virulence factor treatment on TLR expression, as well as cytokine regulation. Wild type and Tlr4 -/- mice were subjected to three days of TAC and subsequently confronted with gram-positive TLR2 ligand lipoteichoic acid (LTA, 15mg/g bodyweight) or synthetic CpG-oligodesoxynucleotide 1668 thioate (20 nmol/kg bodyweight, 30 min after D-galactosamin desensitization) signaling via TLR9. Hemodynamic measurements and organ preservation were performed 6 h after stimulation. Indeed, the study revealed a robust enhancement of LTA induced pattern recognition receptor and cytokine mRNA expression and a LTA-dependent reduction of hemodynamic pressure in TAC wild type mice. Second-Hit treatment with CpG-ODNs led to similar results. However, second-hit effects were abolished in Tlr4 -/- mice. In total, these data indicate for the first time that cardiac stress increases the inflammatory response towards both, gram-negative and gram-positive, TLR ligands as well as bacterial DNA. The decrease of the inflammatory response upon TLR2 and -9 ligand challenge in TAC Tlr4 -/- mice demonstrates that a lack of TLR4 signaling does not only prevent left ventricular hypertrophy but also protects the mice from a cardiac stress induced hyperinflammatory reaction.  相似文献   
68.

Background  

Flavonol glucosides constitute the second group of secondary metabolites that accumulate in Crocus sativus stigmas. To date there are no reports of functionally characterized flavonoid glucosyltransferases in C. sativus, despite the importance of these compounds as antioxidant agents. Moreover, their bitter taste makes them excellent candidates for consideration as potential organoleptic agents of saffron spice, the dry stigmas of C. sativus.  相似文献   
69.
Pro-Cathepsin D (pCD) is an aspartyl endopeptidase which is over expressed in many cancers. This over expression generally led to its secretion into the extracellular culture medium of cancer cells. Moreover, pCD can auto activate and cleave its substrates at an acidic pH compatible with that found in tumor microenvironments (TME). Thus, exploiting these two pathological characteristics of TME offers the opportunity to develop new protease-activated vector on the basis of their specific substrate structures. The aim of this study was to validate new pCD substrates in the extracellular pH conditions of TME. As a first step, we investigated the effect of pH on the catalytic activity and selectivity of mature Cathepsin D (CD). It was found that the increase in the pH of the media led to a decrease in the reaction rate. However, the specificity of mature CD was not affected by a variation in pH. In the second step, the effect of the substrate structure was studied. We demonstrated that the substrate structure had a significant effect on the catalytic activity of CD. In fact, some modifications in peptide structure induced a change in the catalytic behavior that involved a substrate activation phenomenon. We suggest that this activation may be related to the amphiphilic nature of the modified peptide that may induce an interfacial activation mechanism. Finally, pCD, which is the major form found in the extracellular culture medium of cancer cells, was used. We demonstrated that the proform of CD cleave the modified peptide 5 at pH 6.5 with the same cleavage selectivity obtained with the mature form of the protease. These data provide a better understanding of CD behavior in tumor microenvironment conditions and this knowledge can be used to develop more specific tools for diagnosis and drug delivery.  相似文献   
70.
The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [→ 3)-β-D-Galf-(1 → 5)-β-D-Galf-(1 →] n → mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [→ 5)-β-D-Galf-(1 →] n → mannan core. The mannan cores have also been investigated, and are constituted by a (1 → 6)-α-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 → 2) linked α-mannopyranoses. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号