首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   6篇
  74篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   8篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1957年   2篇
  1951年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
51.
A statistical analysis of the nucleotide sequence variability in 14 published hepatitis B virus (HBV) genomes was carried out using parametric and nonparametric methods. A parametric statistical model revealed that the different regions of the genome differed significantly in their variability. The conclusion was supported by a nonparametric kernel-density model of the HBV genome. Genes S, C, and P, region X, the precore region, and the pre-S2/pre-S1 regions were ranked in order of increasing variability. In many instances, conserved regions of the genome identified with sequences of known function in HBV biology. However, other characterized regions (such as pre-S) showed much variability despite the involvement of their encoded peptides in specific functions. Point mutations that may result in the formation of stop codons and amino acid changes may affect the clinical picture of HBV infection and may be reflected in atypical serological patterns.   相似文献   
52.
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) plays a crucial role in mediating duodenal bicarbonate (HCO(3)(-)) secretion (DBS). Although impaired DBS is observed in CF mutant mice and in CF patients, which would predict increased ulcer susceptibility, duodenal injury is rarely observed in CF patients and is reduced in CF mutant mice. To explain this apparent paradox, we hypothesized that CFTR dysfunction increases cellular [HCO(3)(-)] and buffering power. To further test this hypothesis, we examined the effect of a novel, potent, and highly selective CFTR inhibitor, CFTR(inh)-172, on DBS and duodenal ulceration in rats. DBS was measured in situ using a standard loop perfusion model with a pH stat under isoflurane anesthesia. Duodenal ulcers were induced in rats by cysteamine with or without CFTR(inh)-172 pretreatment 1 h before cysteamine. Superfusion of CFTR(inh)-172 (0.1-10 microM) over the duodenal mucosa had no effect on basal DBS but at 10 microM inhibited acid-induced DBS, suggesting that its effect was limited to CFTR activation. Acid-induced DBS was abolished at 1 and 3 h and was reduced 24 h after treatment with CFTR(inh)-172, although basal DBS was increased at 24 h. CFTR(inh)-172 treatment had no effect on gastric acid or HCO(3)(-) secretion. Duodenal ulcers were observed 24 h after cysteamine treatment but were reduced in CFTR(inh)-172-pretreated rats. CFTR(inh)-172 acutely produces CFTR dysfunction in rodents for up to 24 h. CFTR inhibition reduces acid-induced DBS but also prevents duodenal ulcer formation, supporting our hypothesis that intracellular HCO(3)(-) may be an important protective mechanism for duodenal epithelial cells.  相似文献   
53.
Probiotics represent a potential strategy to influence the host’s immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with d-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure–activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove d-alanine. The molecular structure of native and modified LTAs was determined by 1H NMR and GC–MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their d-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on d-alanine substitutions. d-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.  相似文献   
54.
Activin is known to play an important regulatory role in reproduction, including pregnancy. To further examine the role and signaling mechanism of activin in regulating placental function, the steady-state level of activin type I receptor (ActRI) mRNA in immortalized extravillous trophoblasts (IEVT) cells was measured using competitive PCR (cPCR). An internal standard of ActRI cDNA for cPCR was constructed for the quantification of ActRI mRNA levels in IEVT cells. ActRI mRNA levels were increased in a dose-dependent manner by activin-A with the maximal effect observed at the dose of 10 ng/ml. Time course studies revealed that activin-A had maximal effects on ActRI mRNA levels at 6 hours after treatment. The effects of activin-A on ActRI mRNA levels was blocked by follistatin, an activin binding protein, in a dose-dependent manner. In addition, inhibin-A inhibited basal, as well as activin-A-induced ActRI mRNA levels. These findings provide evidence, for the first time, that activin-A modulates ActRI mRNA levels in human trophoblast cells.  相似文献   
55.
An electrophoretic spectra of proteins, extracted with tris-HCI buffer, pH 8.3 are studied. The ditelosomic lines of the Chinese Spring common wheat cultivar are analysed by the chromosomes of the B genome and of the ditelosomic lines of the same cultivar by first and third chromosomes of the D genome. It is found that structural genes for the synthesis of components Nos. 7, 8, 9 and 10 are localized in 1BL, 2BS, 4BS and 5B chromosomes respectively. The genetic control of the component No. 3 is realized by genes, localized in 1BL and 3D chromosomes, while for component No. 2, in the 3D chromosome.  相似文献   
56.
Hosts utilize macroautophagy/autophagy to clear invading bacteria; however, bacteria have also developed a specific mechanism to survive by manipulating the host cell autophagy mechanism. One pathogen, Legionella pneumophila, can hinder host cell autophagy by using the specific effector protein RavZ that cleaves phosphatidylethanolamine-conjugated LC3 on the phagophore membrane. However, the detailed molecular mechanisms associated with the function of RavZ have hitherto remained unclear. Here, we report on the biochemical characteristics of the RavZ-LC3 interaction, the solution structure of the 1:2 complex between RavZ and LC3, and crystal structures of RavZ showing different conformations of the active site loop without LC3. Based on our biochemical, structural, and cell-based analyses of RavZ and LC3, both distant flexible N- and C-terminal regions containing LC3-interacting region (LIR) motifs are important for substrate recognition. These results suggest a novel mechanism of RavZ action on the phagophore membrane and lay the groundwork for understanding how bacterial pathogens can survive autophagy.  相似文献   
57.
Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm-scale distances. These cable bacteria are capable of developing an extensive network within days, implying a highly efficient carbon acquisition strategy. Presently, the carbon metabolism of cable bacteria is unknown, and hence we adopted a multidisciplinary approach to study the carbon substrate utilization of both cable bacteria and associated microbial community in sediment incubations. Fluorescence in situ hybridization showed rapid downward growth of cable bacteria, concomitant with high rates of electrogenic sulphur oxidation, as quantified by microelectrode profiling. We studied heterotrophy and autotrophy by following 13C-propionate and -bicarbonate incorporation into bacterial fatty acids. This biomarker analysis showed that propionate uptake was limited to fatty acid signatures typical for the genus Desulfobulbus. The nanoscale secondary ion mass spectrometry analysis confirmed heterotrophic rather than autotrophic growth of cable bacteria. Still, high bicarbonate uptake was observed in concert with the development of cable bacteria. Clone libraries of 16S complementary DNA showed numerous sequences associated to chemoautotrophic sulphur-oxidizing Epsilon- and Gammaproteobacteria, whereas 13C-bicarbonate biomarker labelling suggested that these sulphur-oxidizing bacteria were active far below the oxygen penetration. A targeted manipulation experiment demonstrated that chemoautotrophic carbon fixation was tightly linked to the heterotrophic activity of the cable bacteria down to cm depth. Overall, the results suggest that electrogenic sulphur oxidation is performed by a microbial consortium, consisting of chemoorganotrophic cable bacteria and chemolithoautotrophic Epsilon- and Gammaproteobacteria. The metabolic linkage between these two groups is presently unknown and needs further study.  相似文献   
58.

Background

The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n.) route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l.) route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored.

Methods and Results

A recombinant M2 protein with three tandem copies of the M2e (3M2eC) was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs.

Conclusions

The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.  相似文献   
59.
60.
This paper deals with the synthesis of nitrogen mustard analogs, derivatives of purine bases. Alkylation in position N-9 and diethanolamine fixation on position 6 were managed by microwave irradiations. Chlorination of these dihydroxylated intermediates led to a cyclization, giving tricyclic purine base analogs bearing a chloroethyl chain. Finally, MTT assays on obtained compounds do not show cytotoxicity on four different cancer cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号