首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3976篇
  免费   287篇
  国内免费   4篇
  2021年   42篇
  2018年   34篇
  2017年   30篇
  2016年   65篇
  2015年   102篇
  2014年   107篇
  2013年   130篇
  2012年   173篇
  2011年   209篇
  2010年   124篇
  2009年   84篇
  2008年   152篇
  2007年   160篇
  2006年   112篇
  2005年   138篇
  2004年   147篇
  2003年   154篇
  2002年   105篇
  2001年   72篇
  2000年   72篇
  1999年   66篇
  1998年   48篇
  1997年   38篇
  1996年   27篇
  1995年   26篇
  1994年   27篇
  1992年   47篇
  1991年   65篇
  1990年   47篇
  1989年   53篇
  1988年   35篇
  1987年   39篇
  1986年   27篇
  1985年   59篇
  1984年   59篇
  1983年   58篇
  1982年   48篇
  1981年   63篇
  1980年   53篇
  1979年   40篇
  1978年   52篇
  1977年   49篇
  1976年   49篇
  1975年   55篇
  1974年   45篇
  1973年   35篇
  1972年   23篇
  1971年   25篇
  1969年   27篇
  1967年   24篇
排序方式: 共有4267条查询结果,搜索用时 477 毫秒
991.
Saporin is a type I ribosome-inactivating protein that is often appended with a cell-binding domain to specifically target and kill cancer cells. Urokinase plasminogen activator (uPA)-saporin, for example, is an anticancer toxin that consists of a chemical conjugate between the human uPA and native saporin. Both saporin and uPA-saporin enter the target cell by endocytosis and must then escape the endomembrane system to reach the cytosolic ribosomes. The latter process may represent a rate-limiting step for intoxication and would therefore directly affect toxin potency. In the present study, we document two treatments (shock with dimethylsulfoxide and lipopolyamine coadministration) that generate substantial cellular sensitization to saporin/uPA-saporin. With the use of lysosome-endosome X (LEX)1 and LEX2 mutant cell lines, an endosomal trafficking step preceding cargo delivery to the late endosomes was identified as a major site for the dimethylsulfoxide-facilitated entry of saporin into the cytosol. Dimethylsulfoxide and lipopolyamines are known to disrupt the integrity of endosome membranes, so these reagents could facilitate the rapid movement of toxin from permeabilized endosomes to the cytosol. However, the same pattern of toxin sensitization was not observed for dimethylsulfoxide- or lipopolyamine-treated cells exposed to diphtheria toxin, ricin, or the catalytic A chain of ricin. The sensitization effects were thus specific for saporin, suggesting a novel mechanism of saporin translocation by endosome disruption. Lipopolyamines have been developed as in vivo gene therapy vectors; thus, lipopolyamine coadministration with uPA-saporin or other saporin conjugates could represent a new approach for anticancer toxin treatments.  相似文献   
992.
Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.  相似文献   
993.

Background

Insulin stimulates cerebrocortical beta and theta activity in lean humans. This effect is reduced in obese individuals indicating cerebrocortical insulin resistance. In the present study we tested whether insulin detemir is a suitable tool to restore the cerebral insulin response in overweight humans. This approach is based on studies in mice where we could recently demonstrate increased brain tissue concentrations of insulin and increased insulin signaling in the hypothalamus and cerebral cortex following peripheral injection of insulin detemir.

Methodology/Principal Findings

We studied activity of the cerebral cortex using magnetoencephalography in 12 lean and 34 overweight non-diabetic humans during a 2-step hyperinsulinemic euglycemic clamp (each step 90 min) with human insulin (HI) and saline infusion (S). In 10 overweight subjects we additionally performed the euglycemic clamp with insulin detemir (D). While human insulin administration did not change cerebrocortical activity relative to saline (p = 0.90) in overweight subjects, beta activity increased during D administration (basal 59±3 fT, 1st step 62±3 fT, 2nd step 66±5, p = 0.001, D vs. HI). As under this condition glucose infusion rates were lower with D than with HI (p = 0.003), it can be excluded that the cerebral effect is the consequence of a systemic effect. The total effect of insulin detemir on beta activity was not different from the human insulin effect in lean subjects (p = 0.78).

Conclusions/Significance

Despite cerebrocortical resistance to human insulin, insulin detemir increased beta activity in overweight human subjects similarly as human insulin in lean subjects. These data suggest that the decreased cerebral beta activity response in overweight subjects can be restored by insulin detemir.  相似文献   
994.
Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering.  相似文献   
995.
The Mx GTPase family of interferon-induced antiviral proteins   总被引:9,自引:1,他引:8  
Mx proteins are interferon-induced members of the dynamin superfamily of large GTPases. They inhibit a wide range of viruses by blocking an early stage of the replication cycle. Studies in genetically defined mouse strains highlight their powerful action in early antiviral host defence.  相似文献   
996.
Tumor cells change their genetic expression pattern as they progress to states of increasing malignancy. Investigations at the DNA and RNA level alone cannot provide all the information resulting after the translation and processing of the corresponding proteins, which is one reason for a poor correlation between mRNA and the respective protein abundance. In diagnostics, differentially expressed peptides or proteins are important markers for the early detection of cancer. Unfortunately, tumor cells secrete peptides and proteins in only very low amounts, making mass spectrometric determination very difficult. In this publication, methods have been developed for the effective enrichment and cleanup of substances secreted by cultivated cancer cells. To obviate peptides from fetal calf serum used in cell culture, a serum surrogate was developed, which maintained growth of the cancer cells. After the binding of substances from cell-culture supernatants to custom-made magnetic reversed-phase particles, the substances were eluted and separated by capillary high-performance liquid chromatography. Fractions were spotted directly on a MALDI target, and MALDI-TOF mass spectrometric data acquisition was performed in automatic mode. This technology was used to detect substances secreted by two mammary carcinoma cell lines differing in their malignancy (MCF-7, MDA-MB 231). Unequivocal differences in the peptide secretion patterns were observed. In conclusion, this system allows the sensitive investigation of peptides secreted by cancer cells in culture and provides a valuable tool for the investigation of cancer cells in different states of malignancy.  相似文献   
997.

Background  

The prefrontal cortex is important in regulating sleep and mood. Diurnally regulated genes in the prefrontal cortex may be controlled by the circadian system, by sleep:wake states, or by cellular metabolism or environmental responses. Bioinformatics analysis of these genes will provide insights into a wide-range of pathways that are involved in the pathophysiology of sleep disorders and psychiatric disorders with sleep disturbances.  相似文献   
998.

Background

Understanding the environmental and genetic risk factors of accelerated lung function decline in the general population is a first step in a prevention strategy against the worldwide increasing respiratory pathology of chronic obstructive pulmonary disease (COPD). Deficiency in antioxidative and detoxifying Glutathione S-transferase (GST) gene has been associated with poorer lung function in children, smokers and patients with respiratory diseases. In the present study, we assessed whether low activity variants in GST genes are also associated with accelerated lung function decline in the general adult population.

Methods

We examined with multiple regression analysis the association of polymorphisms in GSTM1, GSTT1 and GSTP1 genes with annual decline in FEV1, FVC, and FEF25–75 during 11 years of follow-up in 4686 subjects of the prospective SAPALDIA cohort representative of the Swiss general population. Effect modification by smoking, gender, bronchial hyperresponisveness and age was studied.

Results

The associations of GST genotypes with FEV1, FVC, and FEF25–75 were comparable in direction, but most consistent for FEV1. GSTT1 homozygous gene deletion alone or in combination with GSTM1 homozygous gene deletion was associated with excess decline in FEV1 in men, but not women, irrespective of smoking status. The additional mean annual decline in FEV1 in men with GSTT1 and concurrent GSTM1 gene deletion was -8.3 ml/yr (95% confidence interval: -12.6 to -3.9) relative to men without these gene deletions. The GSTT1 effect on the FEV1 decline comparable to the observed difference in FEV1 decline between never and persistent smoking men. Effect modification by gender was statistically significant.

Conclusion

Our results suggest that genetic GSTT1 deficiency is a prevalent and strong determinant of accelerated lung function decline in the male general population.  相似文献   
999.
DNA double-strand break repair by the error-free pathway of homologous recombination (HR) requires the concerted action of several factors. Among these, EXO1 and DNA2/BLM are responsible for the extensive resection of DNA ends to produce 3′-overhangs, which are essential intermediates for downstream steps of HR. Here we show that EXO1 is a SUMO target and that sumoylation affects EXO1 ubiquitylation and protein stability. We identify an UBC9-PIAS1/PIAS4-dependent mechanism controlling human EXO1 sumoylation in vivo and demonstrate conservation of this mechanism in yeast by the Ubc9-Siz1/Siz2 using an in vitro reconstituted system. Furthermore, we show physical interaction between EXO1 and the de-sumoylating enzyme SENP6 both in vitro and in vivo, promoting EXO1 stability. Finally, we identify the major sites of sumoylation in EXO1 and show that ectopic expression of a sumoylation-deficient form of EXO1 rescues the DNA damage-induced chromosomal aberrations observed upon wt-EXO1 expression. Thus, our study identifies a novel layer of regulation of EXO1, making the pathways that regulate its function an ideal target for therapeutic intervention.  相似文献   
1000.
Differentiation of CD8+ T lymphocytes into effector and memory cells is key for an adequate immune response and relies on complex interplay of pathways that convey signals from the cell surface to the nucleus. In this study, we investigated the proteome of four cytotoxic T‐cell subtypes; naïve, recently activated effector, effector, and memory cells. Cells were fractionated into membrane, cytosol, soluble nuclear, chromatin‐bound, and cytoskeletal compartments. Following LC‐MS/MS analysis, identified peptides were analyzed via MaxQuant. Compartment fractionation and gel‐LC‐MS separation resulted in 2399 proteins identified in total. Comparison between the different subsets resulted in 146 significantly regulated proteins for naïve and effector cells, followed by 116 for activated, and 55 for memory cells. Besides Granzyme B signaling (for activated and/ or effector cells vs. naïve cells), the most prominent changes occurred in the TCA cycle and aspartate degradation. These changes suggest that correct balancing of metabolism is key for differentiation processes. All MS data have been deposited in the ProteomeXchange with identifier PXD001065 ( http://proteomecentral.proteomexchange.org/dataset/PXD001065 ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号