首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16428篇
  免费   1277篇
  国内免费   6篇
  2023年   61篇
  2022年   144篇
  2021年   305篇
  2020年   178篇
  2019年   211篇
  2018年   284篇
  2017年   275篇
  2016年   464篇
  2015年   736篇
  2014年   834篇
  2013年   1026篇
  2012年   1379篇
  2011年   1309篇
  2010年   791篇
  2009年   684篇
  2008年   1008篇
  2007年   1062篇
  2006年   869篇
  2005年   873篇
  2004年   793篇
  2003年   772篇
  2002年   711篇
  2001年   163篇
  2000年   133篇
  1999年   155篇
  1998年   182篇
  1997年   115篇
  1996年   95篇
  1995年   89篇
  1994年   93篇
  1993年   85篇
  1992年   81篇
  1991年   93篇
  1990年   63篇
  1989年   59篇
  1988年   42篇
  1987年   53篇
  1986年   39篇
  1985年   60篇
  1984年   65篇
  1983年   60篇
  1982年   47篇
  1981年   73篇
  1980年   61篇
  1979年   45篇
  1978年   59篇
  1977年   45篇
  1976年   42篇
  1975年   50篇
  1974年   41篇
排序方式: 共有10000条查询结果,搜索用时 687 毫秒
901.
The physiologically active form of vitamin D, 1,25-dihydroxyvitamin D(3), plays an important role not only in the establishment and maintenance of calcium metabolism, but also in regulating cell growth and differentiation. Because the clinical usefulness of 1,25-dihydroxyvitamin D(3) is limited by its tendency to cause hypercalcemia, new analogs with a better therapeutic profile have been synthesized, including ZK 156718. We compared the effects of 1,25-dihydroxyvitamin D(3) and ZK 156718 on growth, differentiation, and on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Whereas ZK 156718 at the concentration [10(-8) M] was as potent as 10(-6) M 1,25-dihydroxyvitamin D(3) in inducing differentiation and p21(Waf1/Cip1) expression, it was even more effective in inhibiting cell growth and stimulating p27(Kip1) expression than 1,25-dihydroxyvitamin D(3) itself. In summary, our study presents a new and potent vitamin D analog with a decreased metabolic stability, making it useful for the treatment of a diversity of clinical disorders.  相似文献   
902.
To elucidate the molecular mechanisms of cell death, we have cloned a new gene, designated death-upregulated gene (DUG), from rat insulinoma cells. DUG is constitutively expressed at very low levels in normal cells but is dramatically upregulated in apoptotic cells following serum/glucose starvation or death receptor ligation by Fas ligand. The DUG mRNA is present in two splicing forms: a long form that encodes a protein of 469 amino acids and a short form that gives rise to a polypeptide of 432 amino acids. The predicted DUG protein sequence contains two putative nuclear localization signals and multiple phosphorylation sites for protein kinases and two conserved MA3 domains. Importantly, DUG is homologous to eukaryotic translation initiation factor (eIF) 4G and binds to eIF4A presumably through MA3 domains. Upon transfection, DUG inhibits both intrinsic and extrinsic pathways of apoptosis. Thus, DUG is a novel homologue of eIF4G that regulates apoptosis.  相似文献   
903.
We analyzed the influence of water activity on the lateral self-diffusion of supported phospholipid monolayers. Lipid monolayer membranes were supported by polysaccharide cushions (chitosan and agarose), or glass. A simple diffusion model was derived, based on activated diffusion with an activation energy, E(a), which depends on the hydration state of the lipid headgroup. A crucial assumption of the derived model is that E(a) can be calculated assuming an exponential decay of the humidity-dependent disjoining pressure in the monolayer/substrate interface with respect to the equilibrium separation distance. A plot of ln(D) against ln(p(0)/p), where D is the measured diffusion coefficient and p(0) and p are the partial water pressures at saturation and at a particular relative humidity, respectively, was observed to be linear in all cases (i.e., for differing lipids, lateral monolayer pressures, temperatures, and substrates), in accordance with the above-mentioned diffusion model. No indications for humidity-induced first-order phase transitions in the supported phospholipid monolayers were found. Many biological processes such as vesicle fusion and recognition processes involve dehydration/hydration cycles, and it can be expected that the water activity significantly affects the kinetics of these processes in a manner similar to that examined in the present work.  相似文献   
904.
The transbilayer movement and distribution of spin-labeled analogs of the steroids androstane (SLA) and cholestane (SLC) were investigated in the human erythrocyte and in liposomes. Membranes were labeled with SLA or SLC, and the analogs in the outer leaflet were selectively reduced at 4C using 6-O-phenylascorbic acid. As shown previously, 6-O-phenylascorbic acid reduces rapidly nitroxides exposed on the outer leaflet, but its permeation of membranes is comparatively slow and thus does not interfere with the assay. From the reduction kinetics, we infer that transbilayer movement of SLA in erythrocytes is rapid at 4C with a half-time of approximately 4.3 min and that the probe distributes almost symmetrically between both halves of the plasma membrane. We have no indication that a protein-mediated transport is involved in the rapid transbilayer movement of SLA because 1) pretreatment of erythrocytes with N-ethyl maleimide affected neither flip-flop nor transbilayer distribution of SLA and 2) flip-flop of SLA was also rapid in pure lipid membranes. The transbilayer dynamics of SLC in erythrocyte membranes could not be resolved by our assay. Thus, the rate of SLC flip-flop must be on the order of, or even faster than, that of probe reduction rate on the exoplasmic leaflet (half-time approximately 0.5 min). The results are discussed with regard to the transbilayer dynamics of cholesterol.  相似文献   
905.
Thoenges D  Zscherp C  Grell E  Barth A 《Biopolymers》2002,67(4-5):271-274
In the case of the integral membrane protein Na+/K+-ATPase, preparation of highly concentrated samples for IR difference spectroscopy often leads to inactivation of the enzyme. Therefore, we compared the activity of Na+/K+-ATPase using different techniques of sample preparation. The loss of activity can be minimized by cooling the sample to 10 degrees C and by the addition of glycerol and dithiothreitol. The activity of Na+/K+-ATPase isolated from pig kidney is independent of the protein concentration whereas the enzyme from shark rectal gland is inactivated at concentrations above 1 microg/microL and is thus unsuitable for IR experiments.  相似文献   
906.
The translocation step of elongation entails the coordinated movement of tRNA and mRNA on the ribosome. Translocation is promoted by elongation factor G (EF-G) and accompanied by GTP hydrolysis, which affects both translocation and turnover of EF-G. Both reactions are much slower (50-100-fold) when GTP is replaced with non-hydrolyzable GTP analogues or GDP, indicating that the reaction rates are determined by conformational transitions induced by GTP hydrolysis. Compared to the rate of uncatalyzed, spontaneous translocation, ribosome binding of EF-G with any guanine nucleotide reduces the free energy of activation by about 18 kJ/mol, whereas GTP hydrolysis contributes another 10 kJ/mol. The acceleration by GTP hydrolysis is due to large decrease in activation enthalpy by about 30 kJ/mol, compared to the reaction with GTP analogues or GDP, whereas the activation entropy becomes unfavorable and is lowered by about 20 kJ/mol (37 degrees C). The data suggest that GTP hydrolysis induces, by a conformational change of EF-G, a rapid conformational rearrangement of the ribosome ("unlocking") which determines the rates of both tRNA-mRNA translocation and recycling of the factor.  相似文献   
907.
The transbilayer movement of glycosphingolipids has been characterized in Golgi, ER, plasma, and model membranes using spin-labeled and fluorescent analogues of the monohexosylsphingolipids glucosylceramide and galactosylceramide and of the dihexosylsphingolipid lactosylceramide. In large unilamellar lipid vesicles, monohexosylsphingolipids underwent a slow transbilayer diffusion (half-time between 2 and 5 h at 20 degrees C). Similarly, the inward redistribution of these sphingolipids in the plasma membrane of the hepatocyte-like cell line HepG2 and of erythrocytes was slow. However, in rat liver ER and Golgi membranes, we found a rapid transbilayer movement of spin-labeled monohexosylsphingolipids (half-time of approximately 3 min at 20 degrees C), which suggests the existence of a monohexosylsphingolipid flippase. The transbilayer movement of glucosylceramide in the Golgi and the ER displayed a saturable behavior, was inhibited by proteolysis, did not require Mg-ATP, and occurs in both directions. Treatment with DIDS inhibited the flip-flop of glucosylceramide but not that of phosphatidylcholine. These data suggest that the transbilayer movement of monoglucosylceramide in the ER and in the Golgi involves a protein that could be distinct from that previously evidenced for glycerophospholipids in the ER. In vivo, transbilayer diffusion should promote a symmetric distribution of monohexosylsphingolipids which are synthesized in the cytosolic leaflet. This should allow glucosylceramide rapid access to the lumenal leaflet where it is converted to lactosylceramide. No significant transbilayer movement of lactosylceramide occurred in both artificial and natural membranes over 1 h. Thus, lactosylceramide, in turn, is unable to diffuse to the cytosolic leaflet and remains at the lumenal leaflet where it undergoes the subsequent glycosylations.  相似文献   
908.
Pan YH  Yu BZ  Berg OG  Jain MK  Bahnson BJ 《Biochemistry》2002,41(50):14790-14800
We have solved the 1.55 A crystal structure of the anion-assisted dimer of porcine pancreatic group IB phospholipase A2 (PLA2), complexed with the products of hydrolysis of the substrate platelet activating factor. The dimer contains five coplanar phosphate anions bound at the contact surface between the two PLA2 subunits. This structure parallels a previously reported anion-assisted dimer that mimics the tetrahedral intermediate of PLA2 bound to a substrate interface [Pan, Y. H., et al. (2001) Biochemistry 40, 609-617]. The dimer structure has a molecule of the product acetate bound in subunit A and the other product 1-octadecyl-sn-glycero-3-phosphocholine (LPC-ether) to subunit B. Therefore, this structure is of the two individual product binary complexes and not of a ternary complex with both products in one active site of PLA2. Protein crystals with bound products were only obtained by cocrystallization starting from the initial substrate. In contrast, an alternate crystal form was obtained when PLA2 was cocrystallized with LPC-ether and succinate, and this crystal form did not contain bound products. The product bound structure has acetate positioned in the catalytic site of subunit A such that one of its oxygen atoms is located 3.5 A from the catalytic calcium. Likewise, a longer than typical Ca-to-Gly(32) carbonyl distance of 3.4 A results in a final Ca coordination that is four-coordinate and has distorted geometry. The other oxygen of acetate makes hydrogen bonds with N(delta)(1)-His(48), O(delta)(1)-Asp(49), and the catalytic assisting water (w7). In contrast, the glycerophosphocholine headgroup of LPC-ether in subunit B makes no contacts with calcium or with the catalytic residues His(48) or Asp(49). The tail of the LPC-ether is located near the active site pocket with the last nine carbons of the sn-1- acyl chain refined in two alternate conformations. The remaining atoms of the LPC-ether product have been modeled into the solvent channel but have their occupancies set to zero in the refined model due to disorder. Together, the crystallographic and equilibrium binding results with the two products show that the simultaneous binding of both the products in a single active site is not favored.  相似文献   
909.
910.
Chlorogenic acid derivatives are potent inhibitors of hepatic glucose production by inhibition of the glucose-6-phosphate translocase component of the hepatic glucose-6-phosphatase system. The pharmacological proof of concept was clearly demonstrated during i.v. infusion of potent derivatives (S 4048, S 3483) in rats. However, the blood glucose lowering effect of S 4048 after bolus i.v. injection lasted only 60-90 min. Plasma clearance of S 4048 was very high, and the parent compound was rapidly and efficiently excreted into the bile of Wistar and GY/TR(-) rats, indicating that mrp-2 was not involved in this hepatobiliary elimination process. About 72% of the total administered radioactivity appeared in the bile within 20 min after i.v. bolus injection of the radiolabeled analogue [(3)H]S 1743 in a Wistar rat. However, in GY/TR(-) rats the dicarboxylic analogue of S 4048, S 3025, was cleared from the plasma less rapidly than its parent compound and its biliary elimination was comparatively low. In contrast, S 3025 exhibited comparable pharmacokinetics and biliary elimination profile as S 4048 in Wistar rats, suggesting that biliary elimination of S 3025 is facilitated by mrp-2, functionally absent in GY/TR(-) rats. Targeting to mrp-2 resulted in a significantly prolonged reduction of blood glucose levels in GY/TR(-) rats after i.v. bolus administration of S 3025.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号