首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   38篇
  2022年   8篇
  2021年   15篇
  2019年   6篇
  2018年   11篇
  2017年   8篇
  2016年   24篇
  2015年   23篇
  2014年   14篇
  2013年   48篇
  2012年   44篇
  2011年   37篇
  2010年   22篇
  2009年   12篇
  2008年   34篇
  2007年   22篇
  2006年   35篇
  2005年   23篇
  2004年   22篇
  2003年   34篇
  2002年   31篇
  2001年   27篇
  2000年   27篇
  1999年   20篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1992年   15篇
  1991年   11篇
  1990年   16篇
  1989年   8篇
  1988年   14篇
  1987年   9篇
  1986年   11篇
  1985年   16篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   9篇
  1979年   5篇
  1977年   6篇
  1976年   6篇
  1975年   11篇
  1974年   10篇
  1972年   13篇
  1971年   10篇
  1968年   11篇
  1967年   7篇
  1966年   4篇
  1965年   4篇
排序方式: 共有816条查询结果,搜索用时 375 毫秒
691.
Isoaurostatin A (IAS-A) isolated from Thermomonospora alba showed weak inhibition against topoisomerase (topo) I (IC(50)=307microM). To get more strong inhibition, derivatives of IAS-A were prepared and their structure-activity relationships against topo I and II were investigated. The addition of hydroxyl group on aromatic rings increased the activities, 3-(3,4,5-trihydroxybenzylidene)-5-hydroxy-3H-benzofuran-2-one (IAS-9) showed strong inhibition (IC(50)=3microM) against topo I. And also, the increasing of hydroxyl group increased growth inhibition against a variety of cancer cells, and IAS-9 showed most potent inhibition. Unlike camptothecin and etoposide, IAS-9 neither stabilized DNA-topo cleavable complex nor intercalated into DNA, and it inhibited topo I and II noncompetitively. The inhibitory activities also increased by opening of lactone ring in the molecule of IAS-9.  相似文献   
692.
To investigate the regulatory mechanism of cell adhesion, we have searched for cellular inhibitory factors which prevent cell adhesion. The brain cytosol was found to inhibit the adhesion of various transformed cells to the substratum. An inhibitory 120-kDa protein was purified by sequential column chromatography. Peptide sequencing revealed that the protein is identical to amphiphysin1. GST-amphiphysin1 suppressed the attachment of HeLa cells to the plate when cells were cultured in the serum-containing medium. Vitronectin, a major cell-adhesive protein in serum and a ligand to alpha(v)beta3 integrin, was responsible for this cell attachment, and the vitronectin action was blocked by GST-amphiphysin1. GST-amphiphysin1 also inhibited the vitronectin-mediated spreading and migration of malignant melanoma cells. Furthermore, GST-amphiphysin1 bound directly to vitronectin. These findings point to the interesting possibility that amphiphysin1 could be a useful tool to inhibit cell-adhesive vitronectin.  相似文献   
693.
Endothelial damage is considered to be an initial change in the atherosclerotic process. However, it has been difficult to detect this initial change in vivo. We established a modified En face immunostaining method that enabled us to obtain clear images of the entire endothelial surface, including at arterial bifurcations, and to quantitate the number of cells of interest in the endothelium. Using this method, we found that treatment with an atherogenic factor, albumin-derived advanced glycosylation end products, for only 2 weeks caused a significant increase in the number of proliferating cell nuclear antigen-positive endothelial cells and the number of macrophages adhering to the endothelium, suggesting that these changes might be relevant to the early events of endothelial dysfunction. In conclusion, the present modified En face immunostaining method may be a promising tool for understanding the pathophysiology of atherosclerosis.  相似文献   
694.
695.
Serotonin N-acetyltransferase (EC. 2.3.1.87) (AA-NAT) is a melatonin rhythm-generating enzyme in pineal glands. To establish a melatonin rhythm, AA-NAT activity is precisely regulated through several signaling pathways. Here we show novel regulation of AA-NAT activity, in which an intramolecular disulfide bond may function as a switch for the catalysis. Recombinant AA-NAT activity was irreversibly inhibited by N-ethylmaleimide (NEM) in an acetyl-CoA-protected manner. Oxidized glutathione or dissolved oxygen reversibly inhibited AA-NAT in an acetyl-CoA-protected manner. To identify the cysteine residues responsible for the inhibition, AA-NAT was first oxidized with dissolved oxygen, treated with NEM, reduced with dithiothreitol, and then labeled with [(14)C]NEM. Cys(61) and Cys(177) were specifically labeled in an acetyl-CoA-protected manner. The AA-NAT with the Cys(61) to Ala and Cys(177) to Ala double substitutions (C61A/C177A-AA-NAT) was fully active but did not exhibit sensitivity to either oxidation or NEM, whereas the AA-NATs with only the single substitutions retained about 40% of these sensitivities. An intramolecular disulfide bond between Cys(61) and Cys(177) formed upon oxidation and cleaved upon reduction was identified. Furthermore, C61A/C177A-AA-NAT expressed in COS7 cells was relatively insensitive to H(2)O(2)-evoked oxidative stress, whereas wild-type AA-NAT was strongly inhibited under the same conditions. These results indicate that the formation and cleavage of the disulfide bond between Cys(61) and Cys(177) produce the active and inactive states of AA-NAT. It is possible that intracellular redox conditions regulate AA-NAT activity through switching via an intramolecular disulfide bridge.  相似文献   
696.
We previously reported that prostaglandin F2alpha (PGF2alpha) induces phosphoinositide hydrolysis by phospholipase C and phosphatidylcholine hydrolysis by phospholipase D through heterotrimeric GTP-binding protein, resulting in the activation of protein kinase C (PKC) in osteoblast-like MC3T3-E1 cells and that PGF2alpha stimulates the synthesis of interleukin-6 (IL-6) via PKC-dependent p44/p42 mitogen-activated protein (MAP) kinase activation. In the present study, we investigated whether zinc affects the PGF2alpha-induced IL-6 synthesis in these cells. Zinc complex of l-carnosine (l-CAZ) dose-dependently suppressed the PGF2alpha-stimulated IL-6 synthesis. In addition, zinc alone reduced the IL-6 synthesis. L-CAZ suppressed the PGF2alpha-induced p44/p42 MAP kinase phosphorylation. However, the p44/p42 MAP kinase phosphorylation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a direct activator of PKC, or NaF, a direct activator of GTP-binding protein, was not affected by l-CAZ. l-CAZ reduced the PGF2alpha-stimulated formation of inositol phosphates and choline. However, l-CAZ did not affect the formation of inositol phosphates or choline induced by NaF. These results strongly suggest that zinc reduces PGF2alpha-induced IL-6 synthesis via suppression of phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblasts.  相似文献   
697.
We determined the nucleotide sequences of two regions in the A+T-rich region of mitochondrial DNA (mtDNA) in the siI and siII types of D. simulans, the maII type of D. mauritiana, and D. sechellia. The sequences were aligned with those of the corresponding regions of siIII of D. simulans and maI of D. mauritiana, D. melanogaster, and D. yakuba. The type I and type II elements and the T-stretches were detected in all eight of the mtDNA types compared, indicating that the three elements are essential in the A+T-rich region of this species subgroup. The alignment revealed several short repetitive sequences and relatively large deletions in the central portions of the region. In the highly conserved sequence elements in the type II elements, the substitution rates were not uniform among lineages and acceleration in the substitution rate might have been due to loss of functional constraint in the stem–loop-forming sequences predicted in the type II elements. Patterns of nucleotide substitutions observed in the A+T-rich region were further compared with those in the coding regions and in the intergenic regions of mtDNA. Substitutions between A and T were particularly repressed in the highly conserved sequence elements and in the intergenic regions compared with those in the A+T-rich region excluding the highly conserved sequence elements and in the fourfold degenerate sites in the coding regions. The functional and structural characteristics of the A+T-rich region that might be involved in this substitutional bias are discussed.  相似文献   
698.
For nuclear entry of large nucleoprotein complexes, it is thought that one key nuclear localization signal (NLS) of a protein component becomes exposed to mediate importin recognition. We show that the nuclear entry of simian virus 40 involves a dynamic interplay between two distinct interiorly situated capsid NLSs, the Vp1 NLS and the Vp3 NLS, and the selective exposure and importin recognition of the Vp3 NLS. The Vp3 NLS-null mutants assembled normally into virion-like particles (VLP) in mutant DNA-transfected cells. When used to infect a new host, the null VLP entered the cell normally but was impaired in viral DNA nuclear entry due to a lack of recognition by the importin alpha 2/beta heterodimer, leading to reduced viability. Both Vp3 and Vp1 NLSs directed importin interaction in vitro, but the Vp1 NLS, which overlaps the Vp1 DNA binding domain, did not bind importins in the presence of DNA. The results suggest that certain canonical NLSs within a nucleoprotein complex, such as the Vp1 NLS, can be masked from functioning by binding to the nucleic acid component and that the availability of an NLS that is not masked and can become exposed for importin binding, such as the Vp3 NLS, is a general feature of the nuclear entry of the nucleoprotein complexes, including those of other animal viruses.  相似文献   
699.
To clarify the role of L-ascorbic acid (AsA) in the formation of pyridinoline, we examined the effects of AsA in vitro using soluble collagen and partially purified lysyl oxidase from bovine aorta. The concentration of dehydrodihydroxylysinonorleucine decreased when AsA was added in the early stage of pyridinoline formation. However, when AsA was added in a later stage of pyridinoline formation, the concentration of pyridinoline was not affected. These findings indicated that AsA was involved in the initial enzymatic reaction in pyridinoline synthesis. We purified lysyl oxidase to confirm its association of AsA. AsA inhibited the enzyme activity. Erythorbic acid and 3,4-dihydroxybenzoate suppressed the enzyme activity as well as AsA did. The inhibition by AsA of the lysyl oxidase activity arose from characteristics of AsA structure. AsA might be important in the regulation of the oxidative reaction of lysine.  相似文献   
700.
The dmd mutant of bacteriophage T4 has a defect in growth because of rapid degradation of late-gene mRNAs, presumably caused by mutant-specific cleavages of RNA. Some such cleavages can occur in an allele-specific manner, depending on the translatability of RNA or the presence of a termination codon. Other cleavages are independent of translation. In the present study, by introducing plasmids carrying various soc alleles, we could detect cleavages of soc RNA in uninfected cells identical to those found in dmd mutant-infected cells. We isolated five Escherichia coli mutant strains in which the dmd mutant was able to grow. One of these strains completely suppressed the dmd mutant-specific cleavages of soc RNA. The loci of the E. coli mutations and the effects of mutations in known RNase-encoding genes suggested that an RNA cleavage activity causing the dmd mutant-specific mRNA degradation is attributable to a novel RNase. In addition, we present evidence that 5'-truncated soc RNA, a stable form in T4-infected cells regardless of the presence of a dmd mutation, is generated by RNase E.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号