首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   51篇
  2022年   9篇
  2021年   19篇
  2020年   8篇
  2019年   8篇
  2018年   21篇
  2017年   14篇
  2016年   28篇
  2015年   33篇
  2014年   21篇
  2013年   54篇
  2012年   52篇
  2011年   49篇
  2010年   31篇
  2009年   14篇
  2008年   40篇
  2007年   27篇
  2006年   36篇
  2005年   28篇
  2004年   30篇
  2003年   41篇
  2002年   33篇
  2001年   27篇
  2000年   29篇
  1999年   20篇
  1998年   11篇
  1997年   6篇
  1996年   8篇
  1992年   17篇
  1991年   12篇
  1990年   16篇
  1989年   8篇
  1988年   14篇
  1987年   9篇
  1986年   11篇
  1985年   16篇
  1984年   11篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   9篇
  1979年   5篇
  1977年   6篇
  1976年   6篇
  1975年   11篇
  1974年   10篇
  1972年   13篇
  1971年   10篇
  1968年   11篇
  1967年   7篇
  1965年   4篇
排序方式: 共有945条查询结果,搜索用时 413 毫秒
921.
Triple-negative breast cancer (TNBC) has a poor prognosis compared to other breast cancer subtypes. Although epidermal growth factor receptor (EGFR) is overexpressed in TNBC, clinical trials with EGFR inhibitors including tyrosine kinase inhibitors (EGFR-TKI) in TNBC have heretofore been unsuccessful. To develop effective EGFR-targeted therapy for TNBC, the precise mechanisms of EGFR-TKI resistance in TNBC need to be elucidated. In this study, to understand the molecular mechanisms involved in the differences in EGFR-TKI efficacy on TNBC between human and mouse, we focused on the effect of IL-26, which is absent in mice. In vitro analysis showed that IL-26 activated AKT and JNK signaling of bypass pathway of EGFR-TKI in both murine and human TNBC cells. We next investigated the mechanisms involved in IL-26-mediated EGFR-TKI resistance in TNBC. We identified EphA3 as a novel functional receptor for IL-26 in TNBC. IL-26 induced dephosphorylation and downmodulation of EphA3 in TNBC, which resulted in increased phosphorylation of AKT and JNK against EGFR-TKI-induced endoplasmic reticulum (ER) stress, leading to tumor growth. Meanwhile, the blockade of IL-26 overcame EGFR-TKI resistance in TNBC. Since the gene encoding IL-26 is absent in mice, we utilized human IL-26 transgenic (hIL-26Tg) mice as a tumor-bearing murine model to characterize the role of IL-26 in the differential effect of EGFR-TKI in human and mice and to confirm our in vitro findings. Our findings indicate that IL-26 activates the bypass pathway of EGFR-TKI, while blockade of IL-26 overcomes EGFR-TKI resistance in TNBC via enhancement of ER stress signaling. Our work provides novel insights into the mechanisms of EGFR-TKI resistance in TNBC via interaction of IL-26 with its newly identified receptor EphA3, while also suggesting IL-26 as a possible therapeutic target in TNBC.Subject terms: Stress signalling, Cell death and immune response, Breast cancer  相似文献   
922.
923.
924.
Coincubation of neutrophils with TNF inhibited the chemoattractant-directed migration of neutrophils under agarose and enhanced their migration in the multiwell chemotaxis chamber. To assess the physiological significance of these differing in vitro TNF effects, ex vivo and in vivo investigations were performed using animal models. Neutrophils from the peripheral blood of rabbits preadministered systemic TNF showed impaired ability to migrate toward chemoattractants in vitro. In addition, systemic TNF administration suppressed zymosan-activated plasma-induced local accumulation of leukocytes in mouse skin. The results indicate that circulating TNF may act as a suppressor for local inflammatory reaction.  相似文献   
925.
Ichthyological Research - Phylogeography infers the demographic history of various species by resolving genetic relationships among populations across a geographic range. Comparison of...  相似文献   
926.
Intramembrane‐cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain‐containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL‐mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL. On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.  相似文献   
927.
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.  相似文献   
928.
929.
Downhill running causes muscle damage, and induces oxidative stress and inflammatory reaction. Recently, it is shown that curcumin possesses anti-oxidant and anti-inflammatory potentials. Interestingly, curcumin reduces inflammatory cytokine concentrations in skeletal muscle after downhill running of mice. However, it is not known whether curcumin affects oxidative stress after downhill running-induced muscle damage. Therefore, the purpose of this study was to investigate the effects of curcumin on oxidative stress following downhill running induced-muscle damage. We also investigated whether curcumin affects macrophage infiltration via chemokines such as MCP-1 and CXCL14. Male C57BL/6 mice were divided into four groups; rest, rest plus curcumin, downhill running, or downhill running plus curcumin. Downhill running mice ran at 22 m/min, −15% grade on the treadmill for 150 min. Curcumin (3 mg) was administered in oral administration immediately after downhill running. Hydrogen peroxide concentration and NADPH-oxidase mRNA expression in the downhill running mice were significantly higher than those in the rest mice, but these variables were significantly attenuated by curcumin administration in downhill running mice. In addition, mRNA expression levels of MCP-1, CXCL14 and F4/80 reflecting presence of macrophages in the downhill running mice were significantly higher than those in the rest mice. However, MCP-1 and F4/80 mRNA expression levels were significantly attenuated by curcumin administration in downhill running mice. Curcumin may attenuate oxidative stress following downhill running-induced muscle damage.  相似文献   
930.
The following procedure stains the atrioventricular conduction system selectively. (1) Wash the fresh heart with physiological saline solution to free it of blood; (2) fix it in 10% formalin containing 0.5% HIO4 for 1 hr; (3) wash in 3 changes of distilled water for 20 min; (4) keep in 80% alcohol for 12 hr to 2 wk; (5) wash with distilled water; (6) treat with a dilute Schiff's reagent containing 0.1 gm of basic fuchsin per 100 ml for 0.5-2 min; (7) rinse in three changes of 2% Na2SO3 in 0.2 N HCI for 3-5 min; (8) wash and examine in 80% alcohol; store in 80% alcohol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号