首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   17篇
  192篇
  2021年   3篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   14篇
  2005年   5篇
  2004年   11篇
  2003年   9篇
  2002年   6篇
  2001年   8篇
  2000年   3篇
  1998年   2篇
  1996年   4篇
  1995年   3篇
  1994年   6篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1973年   4篇
  1969年   2篇
  1964年   2篇
  1961年   3篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1956年   2篇
  1943年   2篇
  1942年   1篇
  1938年   1篇
  1937年   1篇
  1936年   2篇
  1933年   1篇
  1930年   1篇
  1929年   1篇
  1923年   1篇
  1920年   2篇
  1915年   1篇
  1892年   1篇
排序方式: 共有192条查询结果,搜索用时 109 毫秒
131.
Peer review is pivotal to science and academia, as it represents a widely accepted strategy for ensuring quality control in scientific research. Yet, the peer‐review system is poorly adapted to recent changes in the discipline and current societal needs. We provide historical context for the cultural lag that governs peer review that has eventually led to the system's current structural weaknesses (voluntary review, unstandardized review criteria, decentralized process). We argue that some current attempts to upgrade or otherwise modify the peer‐review system are merely sticking‐plaster solutions to these fundamental flaws, and therefore are unlikely to resolve them in the long term. We claim that for peer review to be relevant, effective, and contemporary with today's publishing demands across scientific disciplines, its main components need to be redesigned. We propose directional changes that are likely to improve the quality, rigour, and timeliness of peer review, and thereby ensure that this critical process serves the community it was created for.  相似文献   
132.
Alterations in lysosomal proteases have been implicated in many neurodegenerative diseases. The current study demonstrates a concentration-dependent decrease in PC12 cell viability and transient changes in cystatin C (CYSC), cathepsin B (CATB), cathepsin D (CATD) and caspase-3 following exposure to H2O2. Furthermore, activation of CATD occurred following exposure to H2O2 and cysteine protease suppression, while inhibition of CATD with pepstatin A significantly improved cell viability. Additionally, significant PARP cleavage, suggestive of caspase-3-like activity, was observed following H2O2 exposure, while inhibition of caspase-3 significantly increased cell viability compared to H2O2 administration alone. Collectively, our data suggest that H2O2 induced cell death is regulated at least in part by caspase-3 and CATD. Furthermore, cysteine protease suppression increases CATD expression and activity. These studies provide insight for alternate pathways and potential therapeutic targets of cell death associated with oxidative stress and lysosomal protease alterations.  相似文献   
133.
Ribonucleoprotein (RNP) granules are membraneless compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are localized as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here we demonstrate that RNPs containing vegetally localized RNAs represent a new class of cytoplasmic RNP granule, termed localization-bodies (L-bodies). We show that L-bodies contain a dynamic protein-containing phase surrounding a nondynamic RNA-containing phase. Our results support a role for RNA as a critical component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.  相似文献   
134.
Otis JP  Sahoo D  Drover VA  Yen CL  Carey HV 《PloS one》2011,6(12):e29111
Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival.  相似文献   
135.
Vascular dysfunction in response to reactive oxygen species (ROS) plays an important role in the development and progression of atherosclerotic lesions. In most cells, mitochondria are the major source of cellular ROS during aerobic respiration. Under most conditions the rates of ROS formation and elimination are balanced through mechanisms that sense relative ROS levels. However, a chronic imbalance in redox homeostasis is believed to contribute to various chronic diseases, including atherosclerosis. Uncoupling protein-2 (UCP2) is a mitochondrial inner membrane protein shown to be a negative regulator of macrophage ROS production. In response to a cholesterol-containing atherogenic diet, C57BL/6J mice significantly increased expression of UCP2 in the aorta, while mice lacking UCP2, in the absence of any other genetic modification, displayed significant endothelial dysfunction following the atherogenic diet. Compared with wild-type mice, Ucp2(-/-) mice had decreased endothelial nitric oxide synthase, an increase in vascular cell adhesion molecule-1 expression, increased ROS production, and an impaired ability to increase total antioxidant capacity. These changes in Ucp2(-/-) mice were associated with increased aortic macrophage infiltration and more numerous and larger atherosclerotic lesions. These data establish that in the vasculature UCP2 functions as an adaptive antioxidant defense to protect against the development of atherosclerosis in response to a fat and cholesterol diet.  相似文献   
136.
Human C-reactive protein (CRP), as a mediator of innate immunity, removed damaged cells by activating the classical complement pathway. Previous studies have successfully demonstrated that CRPs are differentially induced as glycosylated molecular variants in certain pathological conditions. Affinity-purified CRPs from two most prevalent diseases in India viz. tuberculosis (TB) and visceral leishmaniasis (VL) have differential glycosylation in their sugar composition and linkages. As anemia is a common manifestation in TB and VL, we assessed the contributory role of glycosylated CRPs to influence hemolysis via CRP-complement-pathway as compared to healthy control subjects. Accordingly, the specific binding of glycosylated CRPs with erythrocytes was established by flow-cytometry and ELISA. Significantly, deglycosylated CRPs showed a 7–8-fold reduced binding with erythrocytes confirming the role of glycosylated moieties. Scatchard analysis revealed striking differences in the apparent binding constants (104–105 M−1) and number of binding sites (106–107sites/erythrocyte) for CRP on patients’ erythrocytes as compared to normal. Western blotting along with immunoprecipitation analysis revealed the presence of distinct molecular determinants on TB and VL erythrocytes specific to disease-associated CRP. Increased fragility, hydrophobicity and decreased rigidity of diseased-erythrocytes upon binding with glycosylated CRP suggested membrane damage. Finally, the erythrocyte-CRP binding was shown to activate the CRP-complement-cascade causing hemolysis, even at physiological concentration of CRP (10 μg/ml). Thus, it may be postulated that CRP have a protective role towards the clearance of damaged-erythrocytes in these two diseases.  相似文献   
137.
The nucleotide sequence of a spinach chloroplast valine tRNA (sp. chl. tRNA Val) has been determined. This tRNA shows essentially equal homology to prokaryotic valine tRNAs (58-65% homology) and to the mitochondrial valine tRNAs of lower eukaryotes (yeast and N. crassa, 61-62% homology). Sp. chl. tRNA Val shows distinctly lower homology to mouse mitochondrial valine tRNA (53% homology) and to eukaryotic cytoplasmic valine tRNAs (47-53% homology). Sp. chl. tRNA Val, like all other chloroplast tRNAs sequenced, contains a methylated GG sequence in the dihydrouridine loop and lacks unusual structural features which have been found in several mitochondrial tRNAs.  相似文献   
138.
The nucleotide sequence of a spinach chloroplast proline tRNA (sp. chl. tRNApro) has been determined. This tRNA shows more overall homology to phage T4 proline tRNA (61% homology) than to eukaryotic proline tRNAs (53% homology) or mitochondrial proline tRNAs (36-49% homology). Sp. chl. tRNApro, like all other chloroplast tRNAs sequenced, contains a methylated GG sequence in the dihyrouridine loop and lacks unusual structural features which have been found in many mitochondrial tRNAs.  相似文献   
139.
140.
Pre-clinical bone cancer pain models mimicking the human condition are required to respond to clinical realities. Breast or prostate cancer patients coping with bone metastases experience intractable pain, which affects their quality of life. Advanced monitoring is thus required to clarify bone cancer pain mechanisms and refine treatments. In our model of rat femoral mammary carcinoma MRMT-1 cell implantation, pain onset and tumor growth were monitored for 21 days. The surgical procedure performed without arthrotomy allowed recording of incidental pain in free-moving rats. Along with the gradual development of mechanical allodynia and hyperalgesia, behavioral signs of ambulatory pain were detected at day 14 by using a dynamic weight-bearing apparatus. Osteopenia was revealed from day 14 concomitantly with disorganization of the trabecular architecture (μCT). Bone metastases were visualized as early as day 8 by MRI (T(1)-Gd-DTPA) before pain detection. PET (Na(18)F) co-registration revealed intra-osseous activity, as determined by anatomical superimposition over MRI in accordance with osteoclastic hyperactivity (TRAP staining). Pain and bone destruction were aggravated with time. Bone remodeling was accompanied by c-Fos (spinal) and ATF3 (DRG) neuronal activation, sustained by astrocyte (GFAP) and microglia (Iba1) reactivity in lumbar spinal cord. Our animal model demonstrates the importance of simultaneously recording pain and tumor progression and will allow us to better characterize therapeutic strategies in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号