首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3500篇
  免费   203篇
  国内免费   1篇
  3704篇
  2022年   22篇
  2021年   42篇
  2020年   25篇
  2019年   43篇
  2018年   57篇
  2017年   48篇
  2016年   72篇
  2015年   118篇
  2014年   143篇
  2013年   241篇
  2012年   214篇
  2011年   234篇
  2010年   142篇
  2009年   143篇
  2008年   219篇
  2007年   207篇
  2006年   217篇
  2005年   168篇
  2004年   184篇
  2003年   193篇
  2002年   185篇
  2001年   50篇
  2000年   59篇
  1999年   60篇
  1998年   46篇
  1997年   29篇
  1996年   31篇
  1995年   18篇
  1994年   29篇
  1993年   22篇
  1992年   42篇
  1991年   31篇
  1990年   29篇
  1989年   24篇
  1988年   51篇
  1987年   24篇
  1986年   27篇
  1985年   20篇
  1984年   18篇
  1983年   9篇
  1982年   12篇
  1981年   12篇
  1980年   11篇
  1979年   11篇
  1977年   10篇
  1975年   13篇
  1974年   17篇
  1973年   14篇
  1972年   20篇
  1971年   12篇
排序方式: 共有3704条查询结果,搜索用时 0 毫秒
851.
The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We previously reported monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor, intravitally in live mice, using a fluorescence ubiquitination-based cell-cycle indicator (FUCCI). Approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after cessation of chemotherapy. These results suggested why most drugs currently in clinical use, which target cancer cells in S/G2/M, are mostly ineffective on solid tumors. In the present report, we used FUCCI imaging and Gelfoam® collagen-sponge-gel histoculture, to demonstrate in real time, that the cell-cycle phase distribution of cancer cells in Gelfoam® and in vivo tumors is highly similar, whereby only the surface cells proliferate and interior cells are quiescent in G0/G1. This is in contrast to 2D culture where most cancer cells cycle. Similarly, the cancer cells responded similarly to toxic chemotherapy in Gelfoam® culture as in vivo, and very differently than cancer cells in 2D culture which were much more chemosensitive. Gelfoam® culture of FUCCI-expressing cancer cells offers the opportunity to image the cell cycle of cancer cells continuously and to screen for novel effective therapies to target quiescent cells, which are the majority in a tumor and which would have a strong probability to be effective in vivo.  相似文献   
852.
853.
854.
855.
856.
Aquaporin-1 (AQP-1) is a water channel protein highly expressed in the vascular endothelial cells of proliferating tissues including malignant cancers. Given that in APC ubiquitinated peptides are effectively introduced into proteasomes from which CD8 epitopes are excised, we fused ubiquitin with AQP-1 (pUB-AQP-1) to produce a DNA vaccine. In C57BL/6J mice immunized with pUB-AQP-1, the growth of B16F10 melanoma was profoundly inhibited. The antitumor effect of the pUB-AQP-1 DNA vaccine was largely mediated by CD8 T cells, which secrete IFN-γ, perforin, and granzyme-B in the presence of APCs transfected with pUB-AQP-1. AQP-1-specific CD8 T cells possessed cytotoxic activity both in vivo and in vitro. After tumor challenge, the microvessel density decreased and the ratio of total blood vessel area to tumor area was significantly reduced as compared with control mice, resulting in a dramatic suppression of tumor growth. The immunization effect was completely abrogated in immunoproteasome-deficient mice. Strikingly this pUB-AQP-1 DNA vaccine was also effective against Colon 26 colon tumors (BALB/c) and MBT/2 bladder tumors (C3H/HeN). Thus, this ubiquitin-conjugated DNA immunization-targeting tumor vasculature is a valid and promising antitumor therapy. This vaccine works across the barriers of tumor species and MHC class I differences in host mice.  相似文献   
857.
The first influenza pandemic of the 21st century was caused by novel H1N1 viruses that emerged in early 2009. Molecular evolutionary analyses of the 2009 pandemic influenza A H1N1 [A(H1N1)pdm09] virus revealed two major clusters, cluster I and cluster II. Although the pathogenicity of viruses belonging to cluster I, which became extinct by the end of 2009, has been examined in a nonhuman primate model, the pathogenic potential of viruses belonging to cluster II, which has spread more widely in the world, has not been studied in this animal model. Here, we characterized two Norwegian isolates belonging to cluster II, namely, A/Norway/3568/2009 (Norway3568) and A/Norway/3487-2/2009 (Norway3487), which caused distinct clinical symptoms, despite their genetic similarity. We observed more efficient replication in cultured cells and delayed virus clearance from ferret respiratory organs for Norway3487 virus, which was isolated from a severe case, compared with the efficiency of replication and time of clearance of Norway3568 virus, which was isolated from a mild case. Moreover, Norway3487 virus to some extent caused more severe lung damage in nonhuman primates than did Norway3568 virus. Our data suggest that the distinct replicative and pathogenic potentials of these two viruses may result from differences in their biological properties (e.g., the receptor-binding specificity of hemagglutinin and viral polymerase activity).  相似文献   
858.
The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.  相似文献   
859.
The dwarf morph of the Lake Tanganyika cichlid Telmatochromis temporalis uses empty snail shells as shelters and breeding sites in shell beds, in which many empty shells exist. Here, we assessed selection forces regulating body size in this fish. Field observations showed that large males tended to have a greater number of females in their territories, suggesting that sexual selection favours large males. Nonetheless, a transplant experiment suggested that male body size was limited by the ability to hide in empty shells from large piscivorous fish. In females, the number of ovarian eggs increased with body size, suggesting that fecundity selection favours large females. However, females are smaller than males. Females spawned eggs close to the apices inside the shells. The small space there would decrease the risk of egg predation by egg predators, and small body size of females may be a result of adaptation to spawn eggs in the small, safe spaces. This study provides support for the idea that male and female body sizes have been limited by different ecological pressures (predation on adult fish in males, predation on eggs in females), which has not been reported previously in any animal.  相似文献   
860.
IRE1α is an endoplasmic reticulum (ER) localized signaling molecule critical for unfolded protein response. During ER stress, IRE1α activation is induced by oligomerization and autophosphorylation in its cytosolic domain, a process triggered by dissociation of an ER luminal chaperone, binding immunoglobulin-protein (BiP), from IRE1α. In addition, inhibition of a cytosolic chaperone protein Hsp90 also induces IRE1α oligomerization and activation in the absence of an ER stressor. Here, we report that the Hsp90 cochaperone Cdc37 directly interacts with IRE1α through a highly conserved cytosolic motif of IRE1α. Cdc37 knockdown or disruption of Cdc37 interaction with IRE1α significantly increased basal IRE1α activity. In INS-1 cells, Hsp90 inhibition and disruption of IRE1α-Cdc37 interaction both induced an ER stress response and impaired insulin synthesis and secretion. These data suggest that Cdc37-mediated direct interaction between Hsp90/Cdc37 and an IRE1α cytosolic motif is important to maintain basal IRE1α activity and contributes to normal protein homeostasis and unfolded protein response under physiological stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号