首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   4篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   7篇
  2001年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1991年   3篇
  1989年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
61.
The coloration of species can have multiple functions, such as predator avoidance and sexual signalling, that directly affect fitness. As selection should favour traits that positively affect fitness, the genes underlying the trait should reach fixation, thereby preventing the evolution of polymorphisms. This is particularly true for aposematic species that rely on coloration as a warning signal to advertise their unprofitability to predators. Nonetheless, there are numerous examples of aposematic species showing remarkable colour polymorphisms. We examined whether colour polymorphism in the wood tiger moth is maintained by trade-offs between different functions of coloration. In Finland, males of this species have two distinct colour morphs: white and yellow. The efficacy of the warning signal of these morphs was tested by offering them to blue tits in the laboratory. Birds hesitated significantly longer to attack yellow than white males. In a field experiment, the survival of the yellow males was also higher than white males. However, mating experiments in the laboratory revealed that yellow males had lower mating success than white males. Our results offer an explanation for the maintenance of polymorphism via trade-off between survival selection and mating success.  相似文献   
62.
We report the purification of two glycosyl hydrolase family 18 chitinases, Chit33 and Chit42, from the filamentous fungus Trichoderma harzianum and characterization using a panel of different soluble chitinous substrates and inhibitors. We were particularly interested in the potential of these (alpha/beta)(8)-barrel fold enzymes to recognize beta-1,4-galactosylated and alpha-1,3-fucosylated oligosaccharides, which are animal-type saccharides of medical relevance. Three-dimensional structural models of the proteins in complex with chito-oligosaccharides were built to support the interpretation of the hydrolysis data. Our kinetic and inhibition studies are indicative of the substrate-assisted catalysis mechanism for both chitinases. Both T. harzianum chitinases are able to catalyze some transglycosylation reactions and cleave both simple chito-oligosaccharides and synthetically modified, beta-1,4-galactosylated and alpha-1,3-fucosylated chito-oligosaccharides. The cleavage data give experimental evidence that the two chitinases have differences in their substrate-binding sites, Chit42 apparently having a deeper substrate binding groove, which provides more tight binding of the substrate at subsites (-2-1-+1+2). On the other hand, some flexibility for the sugar recognition at subsites more distal from the cleavage point is allowed in both chitinases. A galactose unit can be accepted at the putative subsites -4 and -3 of Chit42, and at the subsite -4 of Chit33. Fucose units can be accepted as a branch at the putative -3 and -4 sites of Chit33 and as a branch point at -3 of Chit42. These data provide a good starting point for future protein engineering work aiming at chitinases with altered substrate-binding specificity.  相似文献   
63.
1,3-Galactosylation of radiolabelled bi-antennary acceptors Gal1-4GlcNAc1-3(Gal1-4GlcNAc1-6)Gal-R (R=1-OH, 1-4GlcNAc or 1-4Glc) with bovine thymus 1,3-galactosyltransferase was studied. At all stages of the reactions the three acceptors reacted faster at the 1 6 linked arm than at the 1 3 linked branch. Hence, in addition to the doubly 1,3-galactosylated products, practically pure Gal1-4GlcNAc1-3(Gal1-3Gal1-4GlcNAc1-6)Gal-R could be obtained from the three acceptors in reactions that had proceeded to near completion. The isomeric mono-1,3-galactosylated products were identified by using exoglycosidases to remove the branches unprotected by 1,3-galactoses and by subsequently identifying the resulting linear glycans chromatographically.Abbreviations Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Lac lactose - LacNAc Gal1-4GlcNAc - MH maltoheptaose - MP maltopentaose - MT maltotriose - MTet maltotetraose - WGA wheat germ agglutinin - 3 position 3 of the galactose unit of LacNAc or Lac - 6 position 6 of the galactose unit of LacNAc or Lac  相似文献   
64.
Interactions between selectins and their oligosaccharide-decoratedligands play a crucial role in the initiation of leukocyte extravasation.We have shown that synthetic multivalent sialyl Lewis x glycansinhibit strongly the adhesion of lymphocytes to endotheliumat sites of inflammation. However, enzyme-assisted synthesisof these oligosaccharides is hampered by the lack of sufficientamounts of specific glycosyltransferases. We report here theconstruction of Saccharomyces cerevisiae strains expressingthe soluble catalytic ectodomain of rat Galß1–3/4GlcNAc  相似文献   
65.
We studied whether the presence of breeding kestrels (Falco tinnunculus) affected nest predation and breeding habitat selection of curlews (Numenius arquata) on an open flat farmland area in western Finland. We searched for nests of curlews from an area of 6 km2 during 1985–1993. For each nest found, we recorded the fate of the nest, and the distance to the nearest kestrel nest and to the nearest perch. We measured the impact of breeding kestrels on nest predation by constructing artificial curlew nests in the vicinity of ten kestrel nests in 1993. Curlew nests were closer to kestrel nests than expected from random distribution, eventhough kestrels fed on average 5.5% of curlew chick production. Predation risk by kestrels was lower than predation risk by corvids and other generalist predators, which predated 9% of curlew nests surviving farming practices and an unknown proportion of chicks. Artificial nest experiment showed that nest predation was lower close to kestrel nests than further away suggesting that the breeding association of curlews and kestrels was a behavioural adaptation against nest predation. Thus, the presence of a predator may sometimes be beneficial to prey, and prey animals have behavioural adaptations to these situations.  相似文献   
66.
Extravasation from the blood of malignant tumour cells that form metastasis and leukocytes that go into tissues require contact between selectins and their sialyl Lewis x and sialyl Lewis a (sLex and sLea respectively) decorated ligands. Endothelial cells have been shown to express sLex epitopes in lymph nodes and at sites of inflammation, and this is crucial for the selectin-dependent leukocyte traffic. Besides the ability to synthesize sLex on sialylated N-acetyllactosamine via the action of α(1,3)fucosyltransferase(s), endothelial cells can also degrade sLex to Lewis x through the action of α(2,3)sialidase(s). In addition, several epithelial tumors possess the machinery to synthesize sLex, which facilitates their adhesion to endothelial E- and P-selectin. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
67.
68.
The aquaculture industry is increasingly replacing fishmeal in feeds for carnivorous fish with soybean meal (SBM). This diet change presents a potential for genotype-environment (G × E) interactions. We tested whether current salmonid breeding programmes that evaluate and select within fishmeal diets also improve growth and efficiency on potential future SBM diets. A total of 1680 European whitefish from 70 families were reared with either fishmeal- or SBM-based diets in a split-family design. Individual daily gain (DG), daily feed intake (DFI) and feed efficiency (FE) were recorded. Traits displayed only weak G × E interactions as variances and heritabilities did not differ substantially between the diets, and cross-diet genetic correlations were near unity. In both diets, DFI exhibited moderate heritability and had very high genetic correlation with DG whereas FE had low heritability. Predicted genetic responses demonstrated that selection to increase DG and FE on the fishmeal diet lead to favourable responses on the SBM diet. Selection for FE based on an index including DG and DFI achieved at least double FE gain versus selection on DG alone. Therefore, current breeding programmes are improving the biological ability of salmonids to use novel plant-based diets, and aiding the aquaculture industry to reduce fishmeal use.  相似文献   
69.
The increasing incidence of severe fungal infections highlights the need for rapid and precise identification methods in clinical mycology. The aim of this study was to develop and validate a culture-indipendent molecular approach that could allow the detection of fungal pathogens in clinical samples, with particular attention to the identification of drug-resistant Candida and Aspergillus species. A real-time multiplex PCR assay was developed using TaqMan probes specific for highly discriminating ITS sequences. In its multiplex format the assay showed a high specificity, clearly discriminating among different species, as well as a high sensitivity (20 CFU/1 mL sample), making it a potentially useful starting point for the development of a more complete molecular diagnostic assay.  相似文献   
70.
The effects of different structural features on the thermostability of Thermopolyspora flexuosa xylanase XYN10A were investigated. A C-terminal carbohydrate binding module had only a slight effect, whereas a polyhistidine tag increased the thermostability of XYN10A xylanase. In contrast, glycosylation at Asn26, located in an exposed loop, decreased the thermostability of the xylanase. The presence of a substrate increased stability mainly at low pH.The thermophilic actinomycete Thermopolyspora flexuosa, previously named Nonomuraea flexuosa and before that Actinomadura flexuosa or Microtetraspora flexuosa (15), produces family 11 and family 10 xylanases, which show high thermostability (16, 17, 22). T. flexuosa xylanase XYN10A has a C-terminal family 13 carbohydrate binding module (CBM) (22). Many xylanases have an additional CBM, which can be a cellulose binding domain (CBD) or a xylan binding domain (XBD) (1, 5, 7, 22, 25, 28). XBD typically increases activity against insoluble xylan (1, 5, 24), although some XBDs also bind soluble xylans (21, 25).We studied the thermostability of T. flexuosa xylanase XYN10A and how CBM and other additional groups affect its thermostability. In addition to confirming the previously described importance of terminal regions, our study identified a loop that is important for the thermostability of T. flexuosa XYN10A. In general, identification of sites important for protein stability is necessary for targeted mutagenesis attempts to increase thermostability.The T. flexuosa xyn10A gene (GenBank accession no. AJ508953) (22), which encodes the full-length XYN10A xylanase (1-AAST… SYNA-448) containing the catalytic domain and CBM, and a truncated gene, which encodes the catalytic domain only (1-AAST… DALN-301) were expressed in Trichoderma reesei as 3′ fusions to a sequence that encodes the Cel6A CBD (A+B) carrier polypeptide and a Kex2 cleavage site (RDKR) (27). In this article, the catalytic domain and the full-length enzyme are referred to as XYN10A and XYN10A-CBM, respectively. The catalytic domain was also produced in Escherichia coli. For production in E. coli, the sequence encoding the catalytic domain was cloned into a pKKtac vector (33) with and without an additional 3′ sequence encoding a 6×His tag at the protein C terminus (… DALNHHHHHH).The proteins were purified by hydrophobic interaction chromatography using a Phenyl Sepharose column and by ion-exchange chromatography using a DEAE Sepharose FF column (Amersham Pharmacia Biotech). The 6×His-tagged XYN10A xylanase produced in E. coli was purified by affinity chromatography using Ni-nitrilotriacetic acid (Ni-NTA) agarose beads (Qiagen).Mass spectrometric (MS) analyses were performed on a high-resolution 4.7-T hybrid quadrupole-Fourier transform ion cyclotron resonance (FT-ICR) instrument (APEX-Qe; Bruker Daltonics), which employs electrospray ionization (ESI) (see supplemental material for details).Xylanase activity was measured with a 3,5-dinitrosalicylic acid assay by using 1% solubilized birchwood xylan as a substrate (33). The optimum temperature, residual activity, and half-life assays were performed as described earlier (36). SWISS-MODEL (4) was used to automatically model T. flexuosa XYN10A and XYN10A-CBM (PDB codes for the modeling templates are 1v6w and 1e0w, respectively [12, 14]).The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the masses of XYN10A xylanase and XYN10A-CBM produced in Trichoderma reesei were ∼37 kDa and ∼50 kDa, respectively (Fig. (Fig.1A).1A). MS analysis of the 6×His-tagged XYN10A produced in E. coli (SDS-PAGE not shown) indicated the presence of a single protein form (Fig. (Fig.1B),1B), with a measured mass of 34,943.25 Da. This is consistent with the theoretical mass of 6×His-tagged XYN10A (34,942.93 Da). In contrast, XYN10A produced in T. reesei was heterogeneously modified, and six protein forms (numbered 1 to 6) were detected (Fig. (Fig.1B).1B). The mass of form 1 (34,120.76 Da) is in excellent agreement with the calculated mass of XYN10A (34120.73 Da). The masses of forms 2 and 3, with mass increments of ∼203 and ∼162 Da, respectively, suggested protein glycosylation (+203 Da = GlcNAc; +162 Da = Man). There are two potential sites for N-glycosylation in XYN10A, Asn26 and Asn95. These six protein forms were resolved only by the high-resolution FT-ICR MS technique, not by SDS-PAGE (eluted as a single band [Fig. [Fig.1A1A]).Open in a separate windowFIG. 1.(A) SDS-PAGE of purified XYN10A and XYN10A-CBM produced in Trichoderma reesei. Lane 1, molecular weight markers; lane 2, catalytic domain (XYN10A); lane 3, full-length enzyme (XYN10A-CBM). (B) ESI FT-ICR mass spectra of XYN10A with a 6×His tag produced in E. coli (bottom) and XYN10A produced in T. reesei (top). Only the expanded view at m/z 1260 to 1300, with the signals representing the most abundant protein ion charge state z = 27+, is presented. For the measured and calculated masses of the protein forms identified, see the supplemental material.In order to locate the glycosylation site or sites, XYN10A proteins produced in E. coli and T. reesei were subjected to on-line pepsin digestion (see supplemental material for details). The sequence coverage for XYN10A xylanase produced in E. coli was 62%. For XYN10A produced in T. reesei, a lower sequence coverage was obtained, but three glycopeptides (residues 20 to 44, 20 to 46, and 20 to 59), carrying one GlcNAc residue, were detected (glycopeptides A to C in Fig. S1B in the supplemental material). A triply charged glycopeptide A was further analyzed by collision-induced dissociation (CID) measurement (see inset in Fig. S1B in the supplemental material). A ladder of b-type fragment ions further identified this peptide and verified Asn26 as the N-glycosylation site in XYN10A, carrying GlcNAc(Man) as a glycan core structure.The additional sequences attached to the catalytic domain affected the thermostability of XYN10A xylanase. The deletion of the native C-terminal CBM domain (XYN10A produced in T. reesei) slightly decreased (∼2°C) the apparent temperature optimum in the region of 70 to 75°C (Table (Table11 and Fig. Fig.2A).2A). However, at 80°C, the deletion of the CBM domain increased the activity (Fig. (Fig.2A).2A). Furthermore, the half-life in the presence of the substrate at 80°C was lower when the CBM was present (Table (Table22).Open in a separate windowFIG. 2.Enzyme activity and stability profiles. (A) Enzyme activity as a function of temperature. The enzymes were incubated for 30 min at each temperature at pH 7. (B) Enzyme inactivation as a function of temperature. The enzyme samples were incubated without the substrate for 30 min at each temperature (pH 7), and the residual activity was measured at 70°C. Values are means ± standard deviations (error bars) for three experiments. Symbols: ⧫, XYN10A xylanase produced in T. reesei; ⋄, XYN10A-CBM produced in T. reesei; ▪, XYN10A produced in E. coli; □, XYN10A-6×His produced in E. coli.

TABLE 1.

Peaks of the optimum temperatures (30-min assay)a
Production hostEnzymeOptimum temp (°C) at:
pH 5.5pH 7pH 8.5
T. reeseiXYN10A707069
XYN10A-CBM707272
E. coliXYN10A787576
XYN10A-6×His787878
Open in a separate windowaOne percent solubilized birchwood xylan was used as the substrate in the assay.

TABLE 2.

pH-dependent half-life times of a catalytic domain (XYN10A) and a full-length enzyme (XYN10A-CBM) produced in T. reesei
EnzymeHalf-life (min) of enzyme under various conditions
With substratea
Without substrate
pH 4 and 65°CpH 5.5 and 80°CpH 7 and 80°CpH 8.5 and 80°CpH 4 and 65°CpH 5.5 and 80°CpH 7 and 80°CpH 8.5 and 80°C
XYN10A183737333.1192323
XYN10A-CBM151717141.3332226
Open in a separate windowaOne percent solubilized birchwood xylan was used as the substrate in the assay.Surprisingly, the apparent temperature optimum of XYN10A xylanase produced in E. coli was 4 to 8°C higher than that for XYN10A produced in T. reesei (Fig. (Fig.2A2A and Table Table1).1). In addition, the C-terminal 6×His tag further increased the apparent temperature optimum of XYN10A by ∼3°C at pH 7 and 8.5 (Fig. (Fig.2A).2A). The higher stability of XYN10A produced in E. coli was also seen in the residual activity profiles (Fig. (Fig.2B).2B). However, the 6×His tag did not elevate the temperature optimum at pH 5.5 (Table (Table1)1) and pH 4.0 (not shown).We also measured the enzyme half-lives with and without substrate (1% solubilized birchwood xylan) at different pH values. Increases of about 5- to 10-fold in the half-lives of both XYN10A xylanase and XYN10A-CBM (produced in T. reesei) were measured at pH 4 in the presence of a substrate (Table (Table2).2). The substrate also slightly protected XYN10A in the pH range from pH 5.5 to 8.5. However, no protection by the substrate was detected for XYN10A-CBM at pH 5.5 to 8.5.By comparing the structures of thermophilic and mesophilic family 10 xylanases, it was suggested that efficient packing of the hydrophobic core, favorable charge interactions with the helix dipole moment, and the presence of prolines at the N termini of alpha-helices are the most probable stabilizing factors (23). Cavity filling and stabilization of loops and N- and C-terminal regions are also important factors (2, 35). By studying chimeric xylanase created by the shuffling of Thermotoga maritima xylanases A and B, it was observed that the N-terminal and C-terminal regions of the xylanase structure formed from the TIM barrel are important for high thermostability (20). Our results also showed that the C-terminal region is important for the thermostability of family 10 xylanases.An increase in the thermostability of other proteins by a polyhistidine tag has already been demonstrated (8, 9, 10, 19). In T. flexuosa XYN10A xylanase, the 6×His tag had an effect on thermostability only at a neutral or alkaline pH. Since histidine is generally neutral in charge above pH 6.5 (average pKa about 6.5) and positively charged at acidic pH, this suggests that noncharged interactions are critical for the stabilization effect.The binding of the C-terminal 6×His tag to the surface of XYN10A xylanase probably prevents unfolding from the C terminus. The disulfide bridge between the N and C termini (located close to each other) has previously been demonstrated to increase the melting temperature (Tm) of a family 10 xylanase by 4°C (2, 35). The thermostability increase achieved by the 6×His tag and CBM in T. flexuosa XYN10A was at the same level (in the range of 3°C in the activity assays). Other stabilization mechanisms are also possible, but it seems probable that the role of protein termini is dominant in stabilization by the 6×His tag. The stability of alpha-helices near the C terminus could also be increased by interaction with the 6×His tag (Fig. (Fig.33).Open in a separate windowFIG. 3.Modeled structure of full-length XYN10A xylanase. The model was created by SWISS-MODEL using 1v6w as a template, and the figure was made using PyMOL (11). The residue Asn301 is the C terminus of the expressed catalytic core. The residue Ala1 (A1) shows the position of the N terminus. The glycosylation site Asn26 and the positively charged residues (His12, Arg14, Arg36, Arg219, Arg252, and Lys289) in the range of the 6×His tag are shown as one-letter codes. The sequence positions corresponding to the 6×His tag (positions 302 to 307 in full-length XYN10A) are shown in magenta, although the conformation of the 6×His tag is not known. The active site is located on the other side of the barrel.Structural modeling was used to examine the regions potentially binding the 6×His tag. In the crystal and nuclear magnetic resonance (NMR) structures 1ddf, 1jt3, and 1zu2, the length of the 6×His tag varies between 12 and 20 Å, since the conformation of the freely protruding 6×His tag may vary significantly. Thus, the 6×His tag forms a rather large binding surface with much variation in the conformation. Since the stabilizing effect of the 6×His tag is pH dependent, it could be that the nearby arginines, having positive charges, have a role in breaking the interactions of the polyhistidine when it becomes positively charged at low pH (Fig. (Fig.3).3). Three nearby arginines (Arg14, Arg219, and Arg252) and a histidine (His12) in the 12-Å distance range from the first histidine in the 6×His tag might cause charge repulsion, and Arg36 and Lys289 at a distance of 17 to 20 Å in the opposite direction might also cause similar repulsion (Fig. (Fig.33).The glycosylation site (Asn26) is located in a well-exposed loop (amino acids 21 to 28) between a beta-strand (amino acids 15 to 20) and alpha-helix (amino acids 29 to 37). Glycosylation can increase the thermostability (6, 18, 29). It can also destabilize, and, according to molecular dynamics simulations, increased mobility correlates with the destabilization caused by glycosylation (31). Glycosylation in a well-exposed loop in XYN10A xylanase could increase local mobility or destabilize the enzyme by affecting the local conformation.The presence of a substrate increased the stability of both the core and full-length XYN10A xylanase under stronger acidic conditions of pH 4 (Table (Table2).2). At pH 5.5 to 8.5, the relative effect was smaller for the XYN10A core and missing in XYN10A-CBM. Protection by a substrate, especially at acidic pH, was observed by Xiong et al. (36) for a family 11 xylanase produced by Thermomyces lanuginosus. A possible explanation for this is that the substrate changes the structure of the enzyme or is involved in hydrogen bonding in the active site in a pH-dependent manner. At pH 4, in which the carboxylic acids start to become on average protonated and the ion pair networks are therefore disturbed, the thermostability of the enzyme is lower than at higher pH. Thus, the substrate could partially neutralize the lower thermostability at low pH by providing new stabilizing interactions. These results suggest that the active site canyon is also important for the stability of xylanases.The effect of the CBM on the thermostability of XYN10A xylanase was twofold; under some conditions, it increased the thermostability, and under other conditions, it decreased the thermostability. Thus, there is no strong thermostabilizing effect by the CBM on T. flexuosa XYN10A. It was observed earlier that the additional domains may function as thermostabilizing domains, because their deletion often decreased the stability of xylanases (3, 30, 32). However, an increase in thermostability has also been observed when a CBM has been deleted (3, 22, 23a, 26). Thus, the effect of a CBM on thermostability varies, and the reason could be that the primary function of a CBM is to bind polysaccharide fibers and not thermostabilization. In general, the high thermostability of xylanases is not dependent on CBMs, and in fact, they might have diverse effects. The same holds true for protein glycosylations.In conclusion, we identified several regions in T. flexuosa XYN10A xylanase that affect the protein''s thermostability. The effects of the additional groups were either stabilizing or destabilizing. This information can be used in the design of stabilizing mutations. Our study also showed that the production system can considerably affect the properties of the enzymes produced, e.g., due to glycosylation, and that when adding purification tags in recombinant proteins, their potential effects should be considered.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号