首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   983篇
  免费   67篇
  2022年   7篇
  2021年   20篇
  2020年   15篇
  2019年   17篇
  2018年   21篇
  2017年   21篇
  2016年   30篇
  2015年   56篇
  2014年   49篇
  2013年   65篇
  2012年   78篇
  2011年   78篇
  2010年   39篇
  2009年   31篇
  2008年   36篇
  2007年   47篇
  2006年   41篇
  2005年   48篇
  2004年   47篇
  2003年   42篇
  2002年   46篇
  2001年   14篇
  2000年   14篇
  1999年   11篇
  1998年   16篇
  1997年   13篇
  1996年   10篇
  1995年   7篇
  1994年   12篇
  1993年   10篇
  1992年   6篇
  1991年   10篇
  1990年   5篇
  1989年   4篇
  1987年   3篇
  1986年   6篇
  1985年   9篇
  1984年   6篇
  1983年   7篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   11篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
排序方式: 共有1050条查询结果,搜索用时 15 毫秒
31.
The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection.  相似文献   
32.
Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate‐resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K‐means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS) encoding gene from glyphosate‐resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target‐site resistance mechanism.  相似文献   
33.
Polyethylene glycol (PEG)‐based low generation dendrimers are analyzed as single excipient or combined with trehalose in relation to their structure and efficiency as enzyme stabilizers during freeze‐thawing, freeze‐drying, and thermal treatment. A novel functional dendrimer (DGo‐CD) based on the known PEG's ability as cryo‐protector and β‐CD as supramolecular stabilizing agent is presented. During freeze‐thawing, PEG and β‐CD failed to prevent catalase denaturation, while dendrimers, and especially DGo‐CD, offered the better protection to the enzyme. During freeze‐drying, trehalose was the best protective additive but DGo‐CD provided also an adequate catalase stability showing a synergistic behavior in comparison to the activities recovered employing PEG or β‐CD as unique additives. Although all the studied dendrimers improved the enzyme remaining activity during thermal treatment of freeze‐dried formulations, the presence of amorphous trehalose was critical to enhance enzyme stability. The crystallinity of the protective matrix, either of PEG derivatives or of trehalose, negatively affected catalase stability in the freeze‐dried systems. When humidified at 52% of relative humidity, the dendrimers delayed trehalose crystallization in the combined matrices, allowing extending the protection at those conditions in which normally trehalose fails. The results show how a relatively simple covalent combination of a polymer such as PEG with β‐CD could significantly affect the properties of the individual components. Also, the results provide further insights about the role played by polymer–enzyme supramolecular interactions (host–guest crosslink, hydrogen bonding, and hydrophobic interactions) on enzyme stability in dehydrated models, being the effect on the stabilization also influenced by the physical state of the matrix. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:786–795, 2013  相似文献   
34.
BackgroundMosquito-borne Zika virus (ZIKV) typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. During the current outbreak in South America, ZIKV infection during pregnancy has been hypothesized to cause microcephaly and other diseases. The detection of ZIKV in fetal brain tissue supports this hypothesis. Because human infections with ZIKV historically have remained sporadic and, until recently, have been limited to small-scale epidemics, neither the disease caused by ZIKV nor the molecular determinants of virulence and/or pathogenicity have been well characterized. Here, we describe a small animal model for wild-type ZIKV of the Asian lineage.Conclusions/SignificanceFoot pad injection of AG129 mice with ZIKV represents a biologically relevant model for studying ZIKV infection and disease development following wild-type virus inoculation without the requirement for adaptation of the virus or intracerebral delivery of the virus. This newly developed Zika disease model can be exploited to identify determinants of ZIKV virulence and reveal molecular mechanisms that control the virus-host interaction, providing a framework for rational design of acute phase therapeutics and for vaccine efficacy testing.  相似文献   
35.
The Amazonian coast has several unique geological characteristics resulting from the interaction between drainage pattern of the Amazon River and the Atlantic Ocean. It is one of the most extensive and sedimentologically dynamic regions of the world, with a large number of continental islands mostly formed less than 10,000 years ago. The natural distribution of the cane toad (Rhinella marina), one of the world’s most successful invasive species, in this complex Amazonian system provides an intriguing model for the investigation of the effects of isolation or the combined effects of isolation and habitat dynamic changes on patterns of genetic variability and population differentiation. We used nine fast-evolving microsatellite loci to contrast patterns of genetic variability in six coastal (three mainlands and three islands) populations of the cane toad near the mouth of the Amazon River. Results from Bayesian multilocus clustering approach and Discriminant Analyses of Principal Component were congruent in showing that each island population was genetically differentiated from the mainland populations. All FST values obtained from all pairwise comparisons were significant, ranging from 0.048 to 0.186. Estimates of both recent and historical gene flow were not significantly different from zero across all population pairs, except the two mainland populations inhabiting continuous habitats. Patterns of population differentiation, with a high level of population substructure and absence/restricted gene flow, suggested that island populations of R. marina are likely isolated since the Holocene sea-level rise. However, considering the similar levels of genetic variability found in both island and mainland populations, it is reliable to assume that they were also isolated for longer periods. Given the genetic uniqueness of each cane toad population, together with the high natural vulnerability of the coastal regions and intense human pressures, we suggest that these populations should be treated as discrete units for conservation management purposes.  相似文献   
36.
The nutrients animals ingest are allocated to serve different functions. We used contrasting C stable isotope signatures of dominant vegetation types in a North American subtropical desert to decipher how avian consumers allocate nutrients to fuel oxidative metabolism and to construct tissues. We conducted C stable isotope analysis of breath and feathers collected from nectarivores (hummingbirds) and of breath, plasma, and red blood cell samples collected from frugivores, granivores, and insectivores. Based on varying nutrient characteristics of food sources, we expected that for frugivores and granivores, CAM‐derived food (RCCAM) would have similar importance for oxidative metabolism and for tissue building, that RCCAM in nectarivores and insectivores would be more important for fueling metabolism than for generating tissues, and that (although low) RCCAM in insectivores would be higher for sustaining metabolism than for building tissues. Our predictions held true for nectarivores and granivores, but RCCAM use in tissue building was lower than expected in frugivores and higher than expected in insectivores. Our examination at the trophic guild, population, and individual levels showed that in general, nutrients used to sustain oxidative metabolism and tissue construction had a uniform isotopic origin. This finding suggests that the avian community under investigation does not route different food groups to fulfill different needs. However, we found some exceptions, indicating that birds can use different food sources for different functions, irrespective of trophic guild.  相似文献   
37.
38.
We describe the in vitro activity of two natural isomeric ent-beyerene diterpenes, several derivatives and synthetic intermediates. Beyerenols 1 and 2 showed EC50 of 4.6?±?9.4 and 5.3?±?9.4?μg/mL against amastigotes of L. (V) brazilensis, with SI of 5.1 and 7.7, respectively. Beyerenol 1 was synthesized from stevioside. In vivo experiments with bereyenols showed cure in 50% of hamsters infected with L. (V) brazilensis topically applied as Cream I (beyerenol 1, 0.81%, w/w) and Cream III (beyerenol 2, 1.96%, w/w). These results suggest that beyerenols are potential candidates for cutaneous leishmaniasis chemotherapy by topical application. In vitro assays of amastigotes of L. (V) brazilensis showed EC50 of 1.1?±?0.1 and 1.3?±?0.04?μg/mL, with SI of 3.1 and 3.5 for hydrazone intermediates 10 and 11, respectively.  相似文献   
39.
Cell division needs to be tightly regulated and closely coordinated with other cellular processes to ensure the generation of fully viable offspring. Here, we investigate division site placement by the cell division regulator MipZ in the alphaproteobacterium Magnetospirillum gryphiswaldense, a species that forms linear chains of magnetosomes to navigate within the geomagnetic field. We show that M. gryphiswaldense contains two MipZ homologs, termed MipZ1 and MipZ2. MipZ2 localizes to the division site, but its absence does not cause any obvious phenotype. MipZ1, by contrast, forms a dynamic bipolar gradient, and its deletion or overproduction cause cell filamentation, suggesting an important role in cell division. The monomeric form of MipZ1 interacts with the chromosome partitioning protein ParB, whereas its ATP‐dependent dimeric form shows non‐specific DNA‐binding activity. Notably, both the dimeric and, to a lesser extent, the monomeric form inhibit FtsZ polymerization in vitro. MipZ1 thus represents a canonical gradient‐forming MipZ homolog that critically contributes to the spatiotemporal control of FtsZ ring formation. Collectively, our findings add to the view that the regulatory role of MipZ proteins in cell division is conserved among many alphaproteobacteria. However, their number and biochemical properties may have adapted to the specific needs of the host organism.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号