首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   58篇
  2023年   2篇
  2022年   6篇
  2021年   16篇
  2020年   13篇
  2019年   14篇
  2018年   8篇
  2017年   5篇
  2016年   13篇
  2015年   25篇
  2014年   36篇
  2013年   35篇
  2012年   70篇
  2011年   52篇
  2010年   31篇
  2009年   27篇
  2008年   40篇
  2007年   52篇
  2006年   45篇
  2005年   43篇
  2004年   47篇
  2003年   27篇
  2002年   34篇
  2001年   5篇
  2000年   2篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1984年   3篇
  1982年   1篇
  1978年   1篇
  1972年   1篇
  1969年   1篇
  1964年   2篇
排序方式: 共有702条查询结果,搜索用时 15 毫秒
91.
Autism spectrum disorders (ASD) are neurodevelopmental disorders with phenotypic and genetic heterogeneity. Recent studies have reported rare and de novo mutations in ASD, but the allelic architecture of ASD remains unclear. To assess the role of common and rare variations in ASD, we constructed a gene co-expression network based on a widespread survey of gene expression in the human brain. We identified modules associated with specific cell types and processes. By integrating known rare mutations and the results of an ASD genome-wide association study (GWAS), we identified two neuronal modules that are perturbed by both rare and common variations. These modules contain highly connected genes that are involved in synaptic and neuronal plasticity and that are expressed in areas associated with learning and memory and sensory perception. The enrichment of common risk variants was replicated in two additional samples which include both simplex and multiplex families. An analysis of the combined contribution of common variants in the neuronal modules revealed a polygenic component to the risk of ASD. The results of this study point toward contribution of minor and major perturbations in the two sub-networks of neuronal genes to ASD risk.  相似文献   
92.
We explore the role of differential compartmentalization of Rhomboid (Rho) proteases that process the Drosophila EGF receptor ligands, in modulating the amount of secreted ligand and consequently the level of EGF receptor (EGFR) activation. The mSpitz ligand precursor is retained in the ER, and is trafficked by the chaperone Star to a late compartment of the secretory pathway, where Rho-1 resides. This work demonstrates that two other Rho proteins, Rho-2 and Rho-3, which are expressed in the germ line and in the developing eye, respectively, cleave the Spitz precursor and Star already in the ER, in addition to their activity in the late compartment. This property attenuates EGFR activation, primarily by compromising the amount of chaperone that can productively traffic the ligand precursor to the late compartment, where cleavage and subsequent secretion take place. These observations identify changes in intracellular compartment localization of Rho proteins as a basis for signal attenuation, in tissues where EGFR activation must be highly restricted in space and time.  相似文献   
93.
94.
95.
Type I interferons (IFNs) signal for their diverse biological effects by binding a common receptor on target cells, composed of the two transmembrane IFNAR1 and IFNAR2 proteins. We have previously differentially enhanced the antiproliferative activity of IFN by increasing the weak binding affinity of IFN to IFNAR1. In this study, we further explored the affinity interdependencies between the two receptor subunits and the role of IFNAR1 in differential IFN activity. For this purpose, we generated a panel of mutations targeting the IFNAR2 binding site on the background of the IFNalpha2 YNS mutant, which increases the affinity to IFNAR1 by 60-fold, resulting in IFNAR2-to-IFNAR1 binding affinity ratios ranging from 1000:1 to 1:1000. Both the antiproliferative and antiviral potencies of the interferon mutants clearly correlated to the in situ binding IC(50) values, independently of the relative contributions of the individual receptors, thus relating to the integral lifetime of the complex. However, the antiproliferative potency correlated throughout the entire range of affinities, as well as with prolonged IFNAR1 receptor down-regulation, whereas the antiviral potency reached a maximum at binding affinities equivalent to that of wild-type IFNalpha2. Our data suggest that (i) the specific activity of interferon is related to the ternary complex binding affinity and not to affinity toward individual receptor components and (ii) although the antiviral pathway is strongly dependent on pSTAT1 activity, the cytostatic effect requires additional mechanisms that may involve IFNAR1 down-regulation. This differential interferon response is ultimately mediated through distinct gene expression profiling.  相似文献   
96.
Dorsal-ventral patterning is specified by signaling centers secreting antagonizing morphogens that form a signaling gradient. Yet, how morphogen gradient is translated intracellularly into fate decisions remains largely unknown. Here, we report that p38 MAPK and CREB function along the dorsal-ventral axis in mesoderm patterning. We find that the phosphorylated form of CREB (S133) is distributed in a gradient along the dorsal-ventral mesoderm axis and that the p38 MAPK pathway mediates the phosphorylation of CREB. Knockdown of CREB prevents chordin expression and mesoderm dorsalization by the Spemann organizer, whereas ectopic expression of activated CREB-VP16 chimera induces chordin expression and dorsalizes mesoderm. Expression of high levels of p38 activator, MKK6E or CREB-VP16 in embryos converts ventral mesoderm into a dorsal organizing center. p38 MAPK and CREB function downstream of maternal Wnt/β-catenin and the organizer-specific genes siamois and goosecoid. At low expression levels, MKK6E induces expression of lateral genes without inducing the expression of dorsal genes. Loss of CREB or p38 MAPK activity enables the expansion of the ventral homeobox gene vent1 into the dorsal marginal region, preventing the lateral expression of Xmyf5. Overall, these data indicate that dorsal-ventral mesoderm patterning is regulated by differential p38/CREB activities along the axis.  相似文献   
97.
Eyal E  Bahar I 《Biophysical journal》2008,94(9):3424-3435
With recent advances in single-molecule manipulation techniques, it is now possible to measure the mechanical resistance of proteins to external pulling forces applied at specific positions. Remarkably, such recent studies demonstrated that the pulling/stretching forces required to initiate unfolding vary considerably depending on the location of the application of the forces, unraveling residue/position-specific response of proteins to uniaxial tension. Here we show that coarse-grained elastic network models based on the topology of interresidue contacts in the native state can satisfactory explain the relative sizes of such stretching forces exerted on different residue pairs. Despite their simplicity, such models presumably capture a fundamental property that dominates the observed behavior: deformations that can be accommodated by the relatively lower frequency modes of motions intrinsically favored by the structure require weaker forces and vice versa. The mechanical response of proteins to external stress is therefore shown to correlate with the anisotropic fluctuation dynamics intrinsically accessible in the folded state. The dependence on the overall fold implies that evolutionarily related proteins sharing common structural features tend to possess similar mechanical properties. However, the theory cannot explain the differences observed in a number of structurally similar but sequentially distant domains, such as the fibronectin domains.  相似文献   
98.
The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated "hypothetical protein" in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase "hot dog" fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupied by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.  相似文献   
99.
Crystals of pyruvate phosphate dikinase in complex with a substrate analogue inhibitor, phosphonopyruvate (K(i) = 3 microM), have been obtained in the presence of Mg(2+). The structure has been determined and refined at 2.2 A resolution, revealing that the Mg(2+)-bound phosphonopyruvate binds in the alpha/beta-barrel's central channel, at the C-termini of the beta-strands. The mode of binding resembles closely the previously proposed PEP substrate binding mode, inferred by the homology of the structure (but not sequence homology) to pyruvate kinase. Kinetic analysis of site-directed mutants, probing residues involved in inhibitor binding, showed that all mutations resulted in inactivation, confirming the key role that these residues play in catalysis. Comparison between the structure of the PPDK-phosphonopyruvate complex and the structures of two complexes of pyruvate kinase, one with Mg(2+)-bound phospholactate and the other with Mg(2+)-oxalate and ATP, revealed that the two enzymes share some key features that facilitate common modes of substrate binding. There are also important structural differences; most notably, the machinery for acid/base catalysis is different.  相似文献   
100.
In contrast to extensive studies of phosphorus, widely considered the main nutrient limiting phytoplankton biomass in freshwater ecosystems, there have been few studies on the role of nitrogen in controlling phytoplankton populations. This situation may be due partly to the complexity in estimating its utilization and bioavailability. In an attempt to provide a novel tool for this purpose, we fused the promoter of the glutamine synthetase-encoding gene, P glnA, from Synechococcus sp. strain PCC7942 to the luxAB luciferase-encoding genes of the bioluminescent bacterium Vibrio harveyi. The resulting construct was introduced into a neutral site on the Synechococcus chromosome to yield the reporter strain GSL. Light emission by this strain was dependent upon ambient nitrogen concentrations. The linear response range of the emitted luminescence was 1 mM to 1 μM for the inorganic nitrogen species tested (ammonium, nitrate, and nitrite) and 10- to 50-fold lower for glutamine and urea. When water samples collected from along a depth profile in Lake Kinneret (Israel) were exposed to the reporter strain, the bioluminescence of the reporter strain mirrored the total dissolved nitrogen concentrations determined for the same samples and was shown to be a sensitive indicator of the concentration of bioavailable nitrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号