首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6258篇
  免费   646篇
  国内免费   1篇
  6905篇
  2022年   36篇
  2021年   63篇
  2020年   39篇
  2019年   34篇
  2018年   69篇
  2017年   66篇
  2016年   107篇
  2015年   186篇
  2014年   214篇
  2013年   310篇
  2012年   403篇
  2011年   359篇
  2010年   219篇
  2009年   236篇
  2008年   353篇
  2007年   364篇
  2006年   326篇
  2005年   318篇
  2004年   346篇
  2003年   322篇
  2002年   354篇
  2001年   90篇
  2000年   75篇
  1999年   79篇
  1998年   99篇
  1997年   94篇
  1996年   90篇
  1995年   86篇
  1994年   68篇
  1993年   68篇
  1992年   80篇
  1991年   88篇
  1990年   68篇
  1989年   68篇
  1988年   64篇
  1987年   64篇
  1986年   47篇
  1985年   59篇
  1984年   69篇
  1983年   70篇
  1982年   67篇
  1981年   65篇
  1980年   62篇
  1979年   52篇
  1978年   55篇
  1977年   44篇
  1976年   34篇
  1975年   41篇
  1974年   45篇
  1973年   50篇
排序方式: 共有6905条查询结果,搜索用时 15 毫秒
81.
The vitamin D endocrine system is important for skeletal homeostasis. 1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] impacts bone indirectly by promoting intestinal absorption of calcium and phosphate and directly by acting on osteoblasts and osteoclasts. Despite the direct actions of 1,25(OH)(2)D(3) in bone, relatively little is known of the mechanisms or target genes that are regulated by 1,25(OH)(2)D(3) in skeletal cells. Here, we identify semaphorin 3B (SEMA3B) as a 1,25(OH)(2)D(3)-stimulated gene in osteoblastic cells. Northern analysis revealed strong induction of SEMA3B mRNA by 1,25(OH)(2)D(3) in MG-63, ST-2, MC3T3, and primary osteoblastic cells. Moreover, differentiation of these osteogenic cells enhanced SEMA3B gene expression. Biological effects of SEMA3B in the skeletal system have not been reported. Here, we show that osteoblast-derived SEMA3B alters global skeletal homeostasis in intact animals and osteoblast function in cell culture. Osteoblast-targeted expression of SEMA3B in mice resulted in reduced bone mineral density and aberrant trabecular structure compared with nontransgenic littermates. Histomorphometry studies indicated that this was likely due to increased osteoclast numbers and activity. Indeed, primary osteoblasts obtained from SEMA3B transgenic mice stimulated osteoclastogenesis to a greater extent than nontransgenic osteoblasts. This study establishes that SEMA3B is a 1,25(OH)(2)D(3)-induced gene in osteoblasts and that osteoblast-derived SEMA3B impacts skeletal biology in vitro and in vivo. Collectively, these studies support a putative role for SEMA3B as an osteoblast protein that regulates bone mass and skeletal homeostasis.  相似文献   
82.
Endangered whooping cranes (Grus americana) have been produced in captivity for reintroduction programs since the 1980s, using techniques such as artificial insemination, multiple clutching, and captive-rearing to speed recovery efforts. Chicks are often hand-reared (HR) by caretakers in crane costumes, socialized into groups and released together, unlike parent-reared (PR) cranes that are raised individually by a male/female crane pair and released singly. HR cranes historically exhibit greater morbidity rates during development than PR cranes, involving musculoskeletal and respiratory system disease, among others. We hypothesized that HR crane chicks exhibit a higher baseline fecal glucocorticoid metabolite (FGM) concentrations during the development compared with PR chicks. Fecal samples were collected between 15 and 70 days of age from HR (n = 15) and PR (n = 8) chicks to test for differences in FGM concentrations using a radioimmunoassay technique following ethanol extraction for steroids. Linear mixed model analysis suggests increasing age of the chick was associated with an increase in FGM (p < .001). Analysis also supported the interaction between rearing strategy and sex of the crane chick (p < .01). Female PR chicks had greater FGM concentrations than all other groups (PR male, p < .01; HR female, p < .001; and HR male, p < .001). This result suggests that there may be an effect of rearing strategy on stress physiology of whooping crane chicks, especially among females. Further research is needed to investigate whether the FGM concentrations are reflective of true differences in stress physiology of young cranes and whether this may impact health and conservation success.  相似文献   
83.
84.
Animal communication theory holds that in order to be evolutionarily stable, signals must be honest on average, but significant dishonesty (i.e. deception) by a subset of the population may also evolve. A typical praying mantid mating system involves active mate searching by males, which is guided by airborne sex pheromones in most species for which mate-searching cues have been studied. The Femme Fatale hypothesis suggests that female mantids may be selected to exploit conspecific males as prey if they benefit nutritionally from cannibalism. Such a benefit exists in the false garden mantid Pseudomantis albofimbriata—females use the resources gained from male consumption to significantly increase their body condition and reproductive output. This study aimed to examine the potential for chemical deception among the subset of females most likely to benefit from cannibalism (poorly fed females). Females were placed into one of four feeding treatments (‘Very Poor’, ‘Poor’, ‘Medium’ and ‘Good’), and males were given the opportunity to choose between visually obscured females in each of the treatments. Female body condition and fecundity varied linearly with food quantity; however, female attractiveness did not. That is, Very Poor females attracted significantly more males than any of the other female treatments, even though these females were in significantly poorer condition, less fecund (in this study) and more likely to cannibalise (in a previous study). In addition, there was a positive correlation between fecundity and attractiveness if Very Poor females were removed from the analysis, suggesting an inherently honest signalling system with a subset of dishonest individuals. This is the first empirical study to provide evidence of sexual deception via chemical cues, and the first to provide support for the Femme Fatale hypothesis.  相似文献   
85.
Proaerolysin, the proform of the channel-forming protein aerolysin, is secreted as a dimer by Aeromonas sp. The protein also exists as a dimer in the crystal, as well as in solution, at least at concentrations in the region of 500 microg/ml. Recently it has been argued that proaerolysin becomes monomeric at concentrations below 100 microg/ml and that only the monomeric form of the protoxin can bind to cell surface receptors (Fivaz, M., Velluz, M.-C., and van der Goot, F. G. (1999) J. Biol. Chem. 274, 37705-37708). Here we show, using non-denaturing polyacrylamide electrophoresis, chemical cross-linking, and analytical ultracentrifugation, that proaerolysin remains dimeric at the lowest concentrations of the protein that we measured (less than 5 microg/ml) and that the dimeric protoxin is quite capable of receptor binding.  相似文献   
86.
87.
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号