首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   48篇
  2020年   3篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   5篇
  2008年   8篇
  2007年   3篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   8篇
  2002年   6篇
  2001年   10篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   10篇
  1992年   12篇
  1991年   13篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   8篇
  1981年   3篇
  1979年   6篇
  1978年   4篇
  1975年   3篇
  1974年   3篇
  1973年   8篇
  1972年   4篇
  1970年   3篇
  1969年   3篇
  1962年   3篇
  1961年   4篇
  1955年   4篇
  1954年   3篇
  1948年   2篇
  1942年   2篇
  1940年   2篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
131.
Summary The ratio of deuterium to hydrogen (expressed as D) in hydrogen released as water during the combustion of dried plant material was examined. The D value (metabolic hydrogen) determined on plant materials grown under controlled conditions is correlated with pathways of photosynthetic carbon metabolism. C3 plants show mean D values of-132 for shoots and -117 for roots; C4 plants show mean D values of -91 for shoots and-77 for roots and CAM plants a D value of-75 for roots and shoots. The difference between the D value of shoot material from C3 and C4 plants was confirmed in species growing under a range of glasshouse conditions. This difference in D value between C3 and C4 species does not appear to be due to differences in the D value (tissue water) in the plants as a result of physical fractionation of hydrogen isotopes during transpiration. In C3 and C4 plants the hydrogen isotope discrimination is in the same direction as the carbon isotope discrimination and factors contributing to the difference in D values are discussed. In CAM plants grown in the laboratory or collected from the field D values range from-75 to +50 and are correlated with 13C values. When deprived of water, the D value (metabolic hydrogen) in both soluble and insoluble material in leaves of Kalanchoe daigremontiana Hamet et Perr., becomes less negative. These changes may reflect the deuterium enrichment of tissue water during transpiration, or in field conditions, may reflect the different D value of available water in areas of increasing aridity. Whatever the origin of the variable D value in CAM plants, this parameter may be a useful index of the water relations of these plants under natural conditions.  相似文献   
132.
Malic acid isolated from Bryophyllum pinnatum (Lamk.) Oken (B. calycinum Salisb.), Bryophyllum tubiflorum Harv., Kalanchoë diagremontiana Hamet et Perrier and Sedum guatamalense Hemsl. after dark 14CO2 fixation was degraded by an in vitro NADP-malic enzyme technique. In the short term (5 to 30 seconds) the malic acid was almost exclusively labeled in the C-4 carboxyl carbon (greater than 90%). The percentage of 14C in the C-4 carboxyl of malic acid declined slowly with time, reaching 70% in B. tubiflorum and 54% in B. pinnatum after 14 hours of exposure to 14CO2. It was found that malic acid-adapted Lactobacillus arabinosus may seriously underestimate the C-4 carboxyl component of label in malic acid-14C. The amount of substrate which the bacteria can completely metabolize was easily exceeded; there was a significant level of randomization of label even when β-decarboxylation proceeded to completion, and in extended incubation periods, more than 25% of label was removed from malic acid-U-14C. The significance of these findings in relation to pathways of carbohydrate metabolism and malic acid synthesis in Crassulacean acid metabolism is discussed.  相似文献   
133.
The natural abundance hydrogen-isotope composition of leaf water ( ) and leaf organic matter ( D org ) was measured in leaves of C3 and C4 dicotyledons and monocotyledons. The value of leaf water showed a marked diurnal variation, greatest enrichment being observed about midday. However, this variation was greater in the more slowly transpiring C4 plants than in C3 plants under comparable environmental conditions. A model based on analogies with a constant feed pan of evaporating water was developed and the difference between C3 and C4 plants expressed in terms of either differences in kinetic enrichment or different leaf morphology. Microclimatic and morphological features of the leaves which may be associated with this factor are discussed. There was no daily excursion in the D org value in leaves of either C3 or C4 plants. When D org values were referenced to the mean values during the period of active photosynthesis, the discrimination against deuterium during photosynthetic metabolism (D) was greater in C3 plants (-117 to -121) than in C4 plants (-86 to -109).These results show that the different water use strategies of C3 and C4 plants are responsible for the measured difference in deuterium-isotope composition of leaf water. However, it is unlikely that these physical processes account fully for the differences in hydrogen-isotope composition of the products of C3 and C4 photosynthetic metabolism.Symbols Hydrogen-isotope composition of leaf water - D org hydrogen-isotope composition of leaf organic matter  相似文献   
134.
CBA/N mice carry an X-linked recessive immunodeficiency (xid) gene manifested by the absence of a B lymphocyte subpopulation, but the manner in which the xid gene exerts its effect on B lymphocyte development is unknown. The production of B lymphocytes in the bone marrow of CBA/N mice has now been compared with that of normal CBA/J mice by using two in vivo assays: immunofluorescence stathmokinetic studies measured pre-B cell proliferation, whereas radioautographic [3H]thymidine labeling was used to evaluate small lymphocyte turnover. Although the total cellularity of CBA/N mouse bone marrow was greater than normal, the absolute number of marrow small lymphocytes, pre-B cells, and B lymphocytes were all similar to those in CBA/J controls. Furthermore, in the bone marrow of CBA/N mice, the proliferation rate of pre-B cells, calculated from their rate of entry into mitosis, and the turnover rate of small lymphocytes, derived from their rate of [3H]thymidine labeling, were not significantly different from those seen in nondefective mice. The present findings that pre-B cell proliferation and small lymphocyte production proceed at similar rates in the bone marrow of xid and normal mice suggest that the xid gene does not act at the level of primary B cell genesis in the bone marrow. The findings are in accord with the view that the xid gene produces a maturation block or a functional abnormality among B lymphocytes in the peripheral lymphoid tissues rather than the deletion of a sublineage of B lymphocytes in the bone marrow.  相似文献   
135.
136.
G. H. Krause  M. Kirk  U. Heber  C. B. Osmond 《Planta》1978,142(2):229-233
When isolated intact chloroplasts or cells from spinach (Spinacia oleracea L.) leaves are incubated in the light in the absence of CO2, their capacity for subsequent CO2-dependent photosynthetic oxygen evolution is drastically decreased. This inhibition is light and oxygen-dependent and can be prevented by addition of bicarbonate. It is concluded that the normal dissipation of photosynthetic energy by carbon assimilation and in processes related to photorespiration is an essential condition for the physiological stability of illuminated intact chloroplasts and cells.Abbreviation chl chlorophyll  相似文献   
137.
Lymphocyte subtypes in mouse bone marrow have been analyzed according to the combination of three surface membrane markers, IgM molecules, Fc, and complement receptors (FcR, CR), expressed simultaneously on individual cells. Marrow cell suspensions were depleted of IgM-, FcR-, and CR-bearing cells, respectively, by differential centrifugation after rosetting with appropriately sensitized erythrocytes. After rerosetting, the FcR-depleted marrow fraction showed many IgM + ve but no CR + ve small lymphocytes, the CR-depleted fraction contained both IgM + ve and FcR + ve small lymphocytes, while the IgM-depleted fraction showed many FcR + ve but few CR + ve small lymphocytes. Radioautography after [3H]thymidine labeling for 1 and 4 days in vivo demonstrated an active turnover of the various lymphocyte subtypes, particularly rapid for (IgM ? ve, FcR + ve) cells. The results demonstrate the presence of three subtypes of marrow small lymphocytes which correspond with three proposed stages in the maturation of newly formed primary B lymphocytes; (a) null cells (IgM ? ve, FcR ? ve, CR ? ve), (b) IgM + ve, FcR ? ve, CR ? ve, and (c) IgM + ve, FcR + ve, CR + ve. In addition, the turnover of a sizeable population of null small lymphocytes which bear FcR, without IgM and CR, suggests the genesis of a distinct marrow lymphocyte lineage, not previously described.  相似文献   
138.
"New pressor protein" (NPP) derived from normal human plasma is an extra renal enzyme that shares strong sequence homology with human coagulation beta-FXIIa. Under our bioassay conditions, human NPP (10-20 microl plasma equivalent/ approximately 300 g rat iv) can raise the systolic blood pressure (SBP) by 40-50 mmHg, the diastolic blood pressure (DBP) by 15-20 mmHg, and the heart rate (HR) by 70-90 beats/min. Plasma epinephrine (of adrenal medullary origin) and norepinephrine rise by about 50- and 10-fold, respectively. Because beta-FXIIa is not normally associated with pressor properties, we endeavored to substantiate that the hypertensive effects of impure NPP preparations used in our experiments are attributable to their content of beta-FXIIa. We carried out comparisons with highly purified (>90%) commercial human beta-FXIIa and found that by gel filtration (Sephadex G-100 and G-75), NPP bioactivity appeared in the approximately 30-kDa elution zone, consistent with the molecular mass of beta-FXIIa. Retention time using fast-protein liquid chromatography anion exchange chromatography was identical. Molecular mass and comigration were confirmed by SDS-PAGE gel electrophoresis, and the recovered approximately 30-kDa protein bands yielded beta-FXIIa fragments identified by mass spectrometry. Matched doses of the NPP preparations produced dose-response curves very similar to those elicited by beta-FXIIa with respect to increments of SBP, DBP, and HR, whereas plasma catecholamine increments were generally comparable. We propose that beta-FXIIa is substantially, if not exclusively, responsible for the observed effects of our NPP preparations and that this points to a novel axis connecting the FXII coagulation cascade and the sympathoadrenal gland to other cardiovascular regulatory mechanisms.  相似文献   
139.
Prior work demonstrated that Heuchera americana, an evergreen herb inhabiting the deciduous forest understory in the southeastern United States, has a 3-4-fold greater photosynthetic capacity under the low-temperature, strong-light, open canopies of winter compared to the high-temperature, weak-light, closed canopies of summer. Moreover, despite the reductions in soil nitrogen, the chilling temperatures, and the increased quantum flux associated with winter, chronic photoinhibition was not observed in this species at this time of the year. We were interested in the photosynthetic acclimation and photoinhibition characteristics of this species when grown under contrasting light and nitrogen regimes. Newly expanded shade-acclimated leaves of forest-grown plants exposed to strong light varying in intensity and duration at 25°C showed a reduction in Fv/Fm (the ratio of variable to maximum room temperature chlorophyll fluorescence measured after dark adaptation), which was correlated with a decline in øa (the intrinsic quantum yield of CO2-saturated O2 evolution on an absorbed light basis). Plants grown in the glasshouse under contrasting light (high and low light; HL and LL, respectively) and nitrogen supply (high and low nitrogen; HN and LN, respectively) regimes showed that photosynthetic acclimation to HL was impaired in LN regimes. The HL-LN plants also had the lowest values of Fv/Fm and of ø on both incident and absorbed light bases and had 50% less chlorophyll (per unit area) compared to plants from other growth regimes. Controlled exposure to bright light at low temperatures (2-3°C) for 3 h resulted in a sharp decrease in Fv/Fm (and rise in Fo, the minimum fluorescence yield) in all plants. Shade-grown plants from both N regimes were highly susceptible to chronic photoinhibition, as indicated by a greater reduction in Fv/Fm and incomplete recovery after 18 h in weak light at 25°C. The HL-HN plants were the least susceptible to chronic photoinhibition, having the smallest decrease in Fv/Fm with near full recovery within 6 h. The decline in Fv/Fm in HL-LN plants was comparable to that of shade-acclimated plants, but recovered fully within 6 h. Low-N plants from both light regimes displayed greater increases in Fo which did not return to pretreatment levels after 18 h of recovery. These studies indicate that HL-LN plants were sensitive to chronic photoinhibition and, at the same time, had a high capacity for dynamic photoinhibition. Experimental garden studies showed that H. americana grown in an open field in summer were photoinhibited and did not fully recover overnight or during extended periods of weak light. These results are discussed in relation to the photosynthetic acclimation of H. americana under natural conditions.  相似文献   
140.
Fluorescence imaging was used to diagnose early stages of the strain-specific interactions between tobacco mosaic virus (strain PV230) and chloroplasts following infection of tobacco leaves (Nicotiana tabacum cv Xanthi). The earliest indication of interaction in tissues that ultimately become chlorotic was a reduction in chlorophyll fluorescence, and there was little fluorescence quenching compared with adjacent healthy tissues. Subsequently, fluorescence increased but remained unquenched. In the late stages fluorescence declined again in chlorotic regions as the chloroticmosaic symptoms developed. These in vivo data showing altered fluorescence yields confirm strain-specific interaction of virus coat protein with photosystem II (PSII) components in vitro, leading to photoinhibition and photooxidation of chlorophyll in infected cells and the development of visible chlorotic-mosaic symptoms. Although mechanisms leading to the low, unquenched fluorescence condition are not known, the intermediate high, unquenched fluorescence condition is consistent with impaired PSII electron transport as measured in vitro. Fluorescence lesions appear more rapidly and develop more extensively in high light, consistent with the faster and larger extent of symptom formation in high-light-grown leaves than in low-light-grown leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号