首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   65篇
  2022年   5篇
  2021年   11篇
  2020年   7篇
  2019年   10篇
  2018年   10篇
  2017年   4篇
  2016年   18篇
  2015年   23篇
  2014年   34篇
  2013年   27篇
  2012年   25篇
  2011年   37篇
  2010年   23篇
  2009年   17篇
  2008年   21篇
  2007年   17篇
  2006年   36篇
  2005年   20篇
  2004年   35篇
  2003年   20篇
  2002年   16篇
  2001年   11篇
  2000年   16篇
  1999年   8篇
  1998年   6篇
  1996年   5篇
  1995年   6篇
  1993年   6篇
  1991年   6篇
  1990年   13篇
  1989年   12篇
  1988年   13篇
  1987年   4篇
  1986年   5篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1980年   3篇
  1978年   7篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1974年   6篇
  1968年   3篇
  1939年   4篇
  1938年   5篇
  1934年   3篇
  1933年   4篇
  1928年   3篇
  1925年   3篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
131.
Sun SX  Wang H  Oster G 《Biophysical journal》2004,86(3):1373-1384
ATP synthase uses a rotary mechanism to carry out its cellular function of manufacturing ATP. The central gamma-shaft rotates inside a hexameric cylinder composed of alternating alpha- and beta-subunits. When operating in the hydrolysis direction under high frictional loads and low ATP concentrations, a coordinated mechanochemical cycle in the three catalytic sites of the beta-subunits rotates the gamma-shaft in three 120 degrees steps. At low frictional loads, the 120 degrees steps alternate with three ATP-independent substeps separated by approximately 30 degrees. We present a quantitative model that accounts for these substeps and show that the observed pauses are due to 1), the asymmetry of the F(1) hexamer that produces a propeller-like motion of the power-stroke and 2), the relatively tight binding of ADP to the catalytic sites.  相似文献   
132.
The motion of many intracellular pathogens is driven by the polymerization of actin filaments. The propulsive force developed by the polymerization process is thought to arise from the thermal motions of the polymerizing filament tips. Recent experiments suggest that the nucleation of actin filaments involves a phase when the filaments are attached to the pathogen surface by a protein complex. Here we extend the "elastic ratchet model" of Mogilner and Oster to incorporate these new findings. We apply this "tethered ratchet" model to derive the force-velocity relation for Listeria and discuss relations of our theoretical predictions to experimental measurements. We also discuss "symmetry breaking" dynamics observed in ActA-coated bead experiments, and the implications of the model for lamellipodial protrusion in migrating cells.  相似文献   
133.
Using circular dichroism (CD) spectroscopy, the stereochemistry at C-13(2) of members of the chlorophyll (Chl) c family, namely Chls c(1), c(2), c(3) and [8-vinyl]-protochlorophyllide a (Pchlide a) was determined. By comparison with spectra of known enantiomers, all Chl c members turned out to have the (R) configuration, which is in agreement with considerations drawn from chlorophyll biosynthesis. Except for a double bond in the side chain at C-17, the chemical structure of Chl c(1) is identical with Pchlide a, the natural substrate of the light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Thus, lack of binding to the active site due to the wrong configuration at C-13(2), which had been proposed previously, cannot be an explanation for inactivity of Chl c in this enzymic reaction. Our results show rather that Chl c(1) is a competitive inhibitor for this enzyme, tested with Pchlide a and Zn-protopheophorbide a (Zn-Ppheide a) as substrates.  相似文献   
134.
Here we show that LNCaP, which is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, becomes sensitive to TRAIL after overexpression of full-length, wild-type BAD (BAD WT). TRAIL induces caspase-dependent cleavage of BAD WT that results in generation of a M(r) 15,000 protein. LNCaP stably expressing truncated BAD (tBAD) and cells expressing mutated BAD at the caspase cleavage site were less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Cytochrome c and Smac/DIABLO release from mitochondria into cytosol was found after TRAIL treatment only in cells overexpressing BAD WT. Furthermore, differences in phosphorylation of serine residues for BAD WT and tBAD were identified. BAD WT was phosphorylated at positions S136 and S155, whereas tBAD was phosphorylated at positions S112, S136, and S155. LNCaP stably expressing BAD mutated at serine 112 to alanine was less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Lastly, recombinant BAD cleaved by caspase-3 is a more potent inducer of cytochrome c and Smac/DIABLO release than BAD WT. In summary, BAD-mediated sensitivity of LNCaP to TRAIL depends on the phosphorylation status of BAD WT and tBAD.  相似文献   
135.
The subterranean mole rat Spalax ehrenbergi superspecies represents an extreme example of adaptive visual and neuronal reorganization. Despite its total visual blindness, its daily activity rhythm is entrainable to light-dark cycles, indicating that it can confer light information to the clock. Although most individuals are active during the light phase under laboratory conditions (diurnal animals), some individuals switch their activity period to the night (nocturnal animals). Similar to other rodents, the Spalax circadian clock is driven by a set of clock genes, including the period (sPer) genes. In this work, we show that diurnal mole rats express the Per genes sPer1 and sPer2 with a peak during the light period. Light can synchronize sPer gene expression to an altered light-dark cycle and thereby reset the clock. In contrast, nocturnal Spalax express sPer2 in the dark period and sPer1 in a biphasic manner, with a light-dependent maximum during the day and a second light-independent maximum during the night. Although sPer1 expression remains light inducible, this is not sufficient to reset the molecular clockwork. Hence, the strict coupling of light, Per expression, and the circadian clock is lost. This indicates that Spalax can dissociate the light-driven resetting pathway from the central clock oscillator.  相似文献   
136.
Viewing the immune system as a molecular recognition device designed to identify “foreign shapes”, we estimate the probability that an immune system with NAb monospecific antibodies in its repertoire can recognize a random foreign antigen. Furthermore, we estimate the improvement in recognition if antibodies are multispecific rather than monospecific. From our probabilistic model we conclude: (1) clonal selection is feasible, i.e. with a finite number of antibodies an animal can recognize an effectively infinite number of antigens; (2) there should not be great differences in the specificities of antibody molecules among different species; (3) the region of a foreign molecule recognized by an antibody must be severely limited in extent; (4) the probability of recognizing a foreign molecule, P, increases with the antibody repertoire size NAb; however, below a certain value of NAb the immune system would be very ineffectual, while beyond some high value of NAb further increases in NAb yield diminishing small increases in P; (5) multispecificity is equivalent to a modest increase (probably less than 10) in the antibody repertoire size NAb, but this increase can substantially improve the probability of an immune system recognizing a foreign molecule.Besides recognizing foreign molecules, the immune system must distinguish them from self molecules. Using the mathematical theory of reliability we argue that multisite recognition is a more reliable method of distinguishing between molecules than single site recognition. This may have been an important evolutionary consideration in the selection of weak non-covalent interactions as the basis of antigen-antibody bonds.  相似文献   
137.
After a first encounter with most antigens, the immune system responds to susequent encounters with a faster, more efficient and more strenuous antibody response. The memory of previous antigen contacts is carried by lymphocytes. Expanding on the model developed in Part 1 of this paper, we examine the optimal strategy available to the immune system for B memory cell production. We again find that the strategy should be of the bang-bang variety. The model we consider assumes that antigen triggers a subpopulation of B-lymphocytes. These triggered lymphocytes can proliferate and secrete modest amounts of antibody, or differentiate into non-dividing plasma cells which secrete large amounts of antibody, or differentiate into non-antibody secreting memory cells. Given injections of antigen at two widely spaced times we compute the strategy which minimizes a linear combination of the primary and secondary response times. We find that for all biologically reasonable parameter values the best strategies are ones in which memory cells are produced at the end of the primary response. Exerimental results which bear on the actual strategies employed are discussed.  相似文献   
138.
139.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein (αSyn) aggregation and associated with abnormalities in lipid metabolism. The accumulation of lipids in cytoplasmic organelles called lipid droplets (LDs) was observed in cellular models of PD. To investigate the pathophysiological consequences of interactions between αSyn and proteins that regulate the homeostasis of LDs, we used a transgenic Drosophila model of PD, in which human αSyn is specifically expressed in photoreceptor neurons. We first found that overexpression of the LD-coating proteins Perilipin 1 or 2 (dPlin1/2), which limit the access of lipases to LDs, markedly increased triacylglyclerol (TG) loaded LDs in neurons. However, dPlin-induced-LDs in neurons are independent of lipid anabolic (diacylglycerol acyltransferase 1/midway, fatty acid transport protein/dFatp) and catabolic (brummer TG lipase) enzymes, indicating that alternative mechanisms regulate neuronal LD homeostasis. Interestingly, the accumulation of LDs induced by various LD proteins (dPlin1, dPlin2, CG7900 or KlarsichtLD-BD) was synergistically amplified by the co-expression of αSyn, which localized to LDs in both Drosophila photoreceptor neurons and in human neuroblastoma cells. Finally, the accumulation of LDs increased the resistance of αSyn to proteolytic digestion, a characteristic of αSyn aggregation in human neurons. We propose that αSyn cooperates with LD proteins to inhibit lipolysis and that binding of αSyn to LDs contributes to the pathogenic misfolding and aggregation of αSyn in neurons.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号