首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2878篇
  免费   271篇
  3149篇
  2023年   20篇
  2022年   32篇
  2021年   83篇
  2020年   54篇
  2019年   56篇
  2018年   71篇
  2017年   57篇
  2016年   91篇
  2015年   162篇
  2014年   157篇
  2013年   178篇
  2012年   240篇
  2011年   248篇
  2010年   128篇
  2009年   108篇
  2008年   174篇
  2007年   191篇
  2006年   174篇
  2005年   132篇
  2004年   132篇
  2003年   122篇
  2002年   102篇
  2001年   34篇
  2000年   12篇
  1999年   25篇
  1998年   26篇
  1997年   18篇
  1996年   19篇
  1995年   15篇
  1994年   9篇
  1993年   14篇
  1992年   16篇
  1991年   11篇
  1990年   18篇
  1989年   5篇
  1986年   5篇
  1985年   7篇
  1984年   9篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1978年   6篇
  1977年   6篇
  1974年   9篇
  1973年   9篇
  1971年   6篇
  1970年   5篇
  1964年   6篇
  1961年   5篇
排序方式: 共有3149条查询结果,搜索用时 0 毫秒
141.
Our study investigated whether the respiratory burst (RB) of polymorphonuclear neutrophils from tuberculosis (TB) patients was related with the disease severity or treatment, as well as the circulating levels of TNF-alpha. The sample comprised 57 patients with moderate (n=21) or advanced disease (n=36, 13 of them with HIV coinfection, TB-HIV) and 12 controls. Patients were newly diagnosed (n=27) or under treatment (moderate=14, advanced=10, TB-HIV=6). Cytometric analysis showed that untreated patients had a depressed RB in response to Candida albicans, being more pronounced in the advanced group and nearly absent in TB-HIV cases. A recovered RB was observed in treated patients, except for the TB-HIV cases that continued to show a poor response. TNF-alpha serum levels were increased in untreated patients, mostly in the advanced and TB-HIV groups, and showed an inverse and significant correlation with the RB. Disease severity and anti-TB therapy exerted negative and positive influences on the reactive oxygen intermediates production, respectively.  相似文献   
142.
In Saccharomyces cerevisiae pseudohyphae formation may be triggered by nitrogen deprivation and is stimulated by cAMP. It was observed that even in a medium with an adequate nitrogen supply, cAMP can induce pseudohyphal growth when S. cerevisiae uses ethanol as carbon source. This led us to investigate the effects of the carbon source and of a variety of stresses on yeast morphology. Pseudohyphae formation and invasive growth were observed in a rich medium (YP) with poor carbon sources such as lactate or ethanol. External cAMP was required for the morphogenetic transition in one genetic background, but was dispensable in strain 1278b which has been shown to have an overactive Ras2/cAMP pathway. Pseudohyphal growth and invasiveness also took place in YPD plates when the yeast was subjected to different stresses: a mild heat-stress (37 °C), an osmotic stress (1 m NACl), or addition of compounds which affect the lipid bilayer organization of the cell membrane (aliphatic alcohols at 2%) or alter the glucan structure of the cell wall (Congo red). We conclude that pseudohyphal growth is a physiological response not only to starvation but also to a stressful environment; it appears to require the coordinate action of a MAP kinase cascade and a cAMP-dependent pathway.  相似文献   
143.
The regulation exerted by ammonium and other nitrogen sources on amino acid utilization was studied in swollen spores of Penicillium chrysogenum. Ammonium prevented the L-lysine, L-arginine and L-ornithine utilization by P. chrysogenum swollen spores seeded in complete media, but not in carbon-deficient media. Transport of L-[14C]lysine into spores incubated in presence of carbon and nitrogen sources was fully inhibited by ammonium ions (35 mM). However, in carbon-derepressed conditions (growth in absence of sugars, with amino acids as the sole carbon source) L-[14C]lysine transport was only partially inhibited. Competition experiments showed that L-lysine (1 mM) inhibits the utilization of L-arginine, and vice versa, L-arginine inhibits the L-lysine uptake. High concentrations of L-ornithine (100 mM) prevented the L-lysine and L-arginine utilization in P. chrysogenum swollen spores. In summary, ammonium seems to prevent the utilization of basic amino acids in P. chrysogenum spores by inhibiting the transport of these amino acids through their specific transport system(s), but not through the general amino acid transport system that is operative under carbon-derepression conditions.  相似文献   
144.
Synthetic seed technology may be of value in breeding programs and allow the propagation of many elite genotype-derived plants in a short time. In this work, a range of artificial endosperm treatments of Cleopatra tangerine zygotic embryos were evaluated for suitability for encapsulation of somatic embryos. Different complexing ions in the form of alginate capsules, zeolite as an ion exchanger and the relationship between capsule-nutrient gel on germination of zygotic embryos, were evaluated. Artificial endosperm assays showed that abscisic acid (1 μM) and mannitol (0.25 M) delayed germination and conversion of zygotic embryos, whereas amino acid supplements (proline, glutamic acid and arginine) accelerated the conversion process. An artificial endosperm was used to encapsulate somatic and zygotic embryos. After encapsulation, zygotic embryos germinated after four days of culture while somatic embryos germinated asynchronously after 20 days. Somatic embryo-derived plantlets showed greater vigour than zygotic embryo-derived plantlets. Results showed that this artificial endosperm is adequate for Cleopatra tangerine somatic embryo germination and conversion into plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
145.
146.
Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.  相似文献   
147.
Cell-mediated immunity plays a crucial role in the control of many infectious diseases, necessitating the need for adjuvants that can augment cellular immune responses elicited by vaccines. It is well established that protection against one such disease, malaria, requires strong CD8(+) T cell responses targeted against the liver stages of the causative agent, Plasmodium spp. In this report we show that the dendritic cell-specific chemokine, dendritic cell-derived CC chemokine 1 (DC-CK1), which is produced in humans and acts on naive lymphocytes, can enhance Ag-specific CD8(+) T cell responses when coadministered with either irradiated Plasmodium yoelii sporozoites or a recombinant adenovirus expressing the P. yoelii circumsporozoite protein in mice. We further show that these enhanced T cell responses result in increased protection to malaria in immunized mice challenged with live P. yoelii sporozoites, revealing an adjuvant activity for DC-CK1. DC-CK1 appears to act preferentially on naive mouse lymphocytes, and its adjuvant effect requires IL-12, but not IFN-gamma or CD40. Overall, our results show for the first time an in vivo role for DC-CK1 in the establishment of primary T cell responses and indicate the potential of this chemokine as an adjuvant for vaccines against malaria as well as other diseases in which cellular immune responses are important.  相似文献   
148.
The genome of influenza A virus is organized into eight ribonucleoprotein complexes (RNPs), each containing one RNA polymerase complex. This RNA polymerase has also been found non-associated to RNPs and is possibly involved in distinct functions in the infection cycle. We have expressed the virus RNA polymerase complex by co-tranfection of the PB1, PB2 and PA genes in mammalian cells and the heterotrimer was purified by the TAP tag procedure. Its 3D structure was determined by electron microscopy and single-particle image processing. The model obtained resembles the structure previously reported for the polymerase complex associated to viral RNPs but appears to be in a more open conformation. Detailed model comparison indicated that specific areas of the complex show important conformational changes as compared to the structure for the RNP-associated polymerase, particularly in regions known to interact with the adjacent NP monomers in the RNP. Also, the PB2 subunit seems to undergo a substantial displacement as a result of the association of the polymerase to RNPs. The structural model presented suggests that a core conformation of the polymerase in solution exists but the interaction with other partners, such as proteins or RNA, will trigger distinct conformational changes to activate new functional properties.  相似文献   
149.
A variety of omega-substituted alkanoic acid (2-amino-phenyl)-amides were designed and synthesized. These compounds were shown to inhibit recombinant human histone deacetylases (HDACs) with IC(50) values in the low micromolar range and induce hyperacetylation of histones in whole cells. They induced expression of p21WAF1/Cip1 and caused cell-cycle arrest in human cancer cells. Compounds in this class showed efficacy in human tumor xenograft models.  相似文献   
150.
During mycobacterial infection, macroautophagy/autophagy, a process modulated by cytokines, is essential for mounting successful host responses. Autophagy collaborates with human immune responses against Mycobacterium tuberculosis (Mt) in association with specific IFNG secreted against the pathogen. However, IFNG alone is not sufficient to the complete bacterial eradication, and other cytokines might be required. Actually, induction of Th1 and Th17 immune responses are required for protection against Mt. Accordingly, we showed that IL17A and IFNG expression in lymphocytes from tuberculosis patients correlates with disease severity. Here we investigate the role of IFNG and IL17A during autophagy in monocytes infected with Mt H37Rv or the mutant MtΔRD1. Patients with active disease were classified as high responder (HR) or low responder (LR) according to their T cell responses against Mt. IL17A augmented autophagy in infected monocytes from HR patients through a mechanism that activated MAPK1/ERK2-MAPK3/ERK1 but, during infection of monocytes from LR patients, IL17A had no effect on the autophagic response. In contrast, addition of IFNG to infected monocytes, increased autophagy by activating MAPK14/p38 α both in HR and LR patients. Interestingly, proteins codified in the RD1 region did not interfere with IFNG and IL17A autophagy induction. Therefore, in severe tuberculosis patients' monocytes, IL17A was unable to augment autophagy because of a defect in the MAPK1/3 signaling pathway. In contrast, both IFNG and IL17A increased autophagy levels in patients with strong immunity to Mt, promoting mycobacterial killing. Our findings might contribute to recognize new targets for the development of novel therapeutic tools to fight the pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号