首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4232篇
  免费   458篇
  2023年   21篇
  2022年   41篇
  2021年   112篇
  2020年   71篇
  2019年   92篇
  2018年   112篇
  2017年   89篇
  2016年   136篇
  2015年   225篇
  2014年   220篇
  2013年   248篇
  2012年   327篇
  2011年   324篇
  2010年   204篇
  2009年   160篇
  2008年   237篇
  2007年   266篇
  2006年   241篇
  2005年   190篇
  2004年   190篇
  2003年   160篇
  2002年   151篇
  2001年   57篇
  2000年   56篇
  1999年   53篇
  1998年   46篇
  1997年   27篇
  1996年   36篇
  1995年   25篇
  1994年   23篇
  1993年   26篇
  1992年   35篇
  1991年   33篇
  1990年   39篇
  1989年   22篇
  1988年   15篇
  1987年   12篇
  1986年   19篇
  1985年   22篇
  1984年   21篇
  1983年   15篇
  1982年   17篇
  1980年   15篇
  1977年   18篇
  1976年   12篇
  1974年   13篇
  1973年   17篇
  1972年   11篇
  1969年   12篇
  1967年   11篇
排序方式: 共有4690条查询结果,搜索用时 15 毫秒
991.
992.
993.
The signal recognition particle (SRP) and its conjugate receptor (SR) mediate cotranslational targeting of a subclass of proteins destined for secretion to the endoplasmic reticulum membrane in eukaryotes or to the plasma membrane in prokaryotes. Conserved active site residues in the GTPase domains of both SRP and SR mediate discrete conformational changes during formation and dissociation of the SRP.SR complex. Here, we describe structures of the prokaryotic SR, FtsY, as an apo protein and in two different complexes with a non-hydrolysable GTP analog (GMPPNP). These structures reveal intermediate conformations of FtsY containing GMPPNP and explain how the conserved active site residues position the nucleotide into a non-catalytic conformation. The basis for the lower specificity of binding of nucleotide in FtsY prior to heterodimerization with the SRP conjugate Ffh is also shown. We propose that these structural changes represent discrete conformational states assumed by FtsY during targeting complex formation and dissociation.  相似文献   
994.

Background

The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres.

Methods/Principal Findings

To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate.

Conclusions/Significance

These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization.  相似文献   
995.

Background

A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure.

Results

We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data.

Conclusion

We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods.  相似文献   
996.

Background  

Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious.  相似文献   
997.

Background

Several strategies and devices have been designed to protect health care providers from acquiring transmissible respiratory diseases while providing care. In modulating the physical characteristics of the respiratory secretions to minimize the aerosolization that facilitates transmission of airborne diseases, a fundamental premise is that the prototype drugs have no adverse effect on the first line of respiratory defense, clearance of mucus by ciliary action.

Methods

To assess and demonstrate the primary mechanism of our mucomodulators (XLs), we have built our evidence moving from basic laboratory studies to an ex-vivo model and then to an in-vivo large animal model. We exposed anesthetized dogs without hypersecretion to different dose concentrations of aerosolized XL "B", XL "D" and XL "S". We assessed: cardio-respiratory pattern, tracheal mucus clearance, airway patency, and mucus viscoelastic changes.

Results

Exposure of frog palate mucus to XLs did not affect the clearance of mucus by ciliary action. Dogs maintained normal cardio-respiratory pattern with XL administration. Tracheal mucociliary clearance in anesthetized dogs indicated a sustained 40% mean increase. Tracheal mucus showed increased filance, and there was no mucus retention in the airways.

Conclusion

The ex-vivo frog palate and the in-vivo mammalian models used in this study, appear to be appropriate and complement each other to better assess the effects that our mucomodulators exert on the mucociliary clearance defence mechanism. The physiological function of the mucociliary apparatus was not negatively affected in any of the two epithelial models. Airway mucus crosslinked by mucomodulators is better cleared from an intact airway and normally functioning respiratory system, either due to enhanced interaction with cilia or airflow-dependent mechanisms. Data obtained in this study allow us to assure that we have complied with the fundamental requirement criteria established in the initial phase of developing the concept of mucomodulation: Can we modulate the physical characteristics of the respiratory secretions to reduce aerosolization without affecting normal mucociliary clearance function, or even better improving it?  相似文献   
998.
999.
Aberrant DNA methylation is frequently observed in disease, including many cancer types, yet the underlying mechanisms remain unclear. Because germline and somatic mutations in the genes that are responsible for DNA methylation are infrequent in malignancies, additional mechanisms must be considered. Mycoplasmas spp., including Mycoplasma hyorhinis, efficiently colonize human cells and may serve as a vehicle for delivery of enzymatically active microbial proteins into the intracellular milieu. Here, we performed, for the first time, genome-wide and individual gene mapping of methylation marks generated by the M. hyorhinis CG- and GATC-specific DNA cytosine methyltransferases (MTases) in human cells. Our results demonstrated that, upon expression in human cells, MTases readily translocated to the cell nucleus. In the nucleus, MTases selectively and efficiently methylated the host genome at the DNA sequence sites free from pre-existing endogenous methylation, including those in a variety of cancer-associated genes. We also established that mycoplasma is widespread in colorectal cancers, suggesting that either the infection contributed to malignancy onset or, alternatively, that tumors provide a favorable environment for mycoplasma growth. In the human genome, ∼11% of GATC sites overlap with CGs (e.g., CGATmCG); therefore, the methylated status of these sites can be perpetuated by human DNMT1. Based on these results, we now suggest that the GATC-specific methylation represents a novel type of infection-specific epigenetic mark that originates in human cells with a previous exposure to infection. Overall, our findings unveil an entirely new panorama of interactions between the human microbiome and epigenome with a potential impact in disease etiology.  相似文献   
1000.
Complete characterization of antibody specificities associated to natural infections is expected to provide a rich source of serologic biomarkers with potential applications in molecular diagnosis, follow-up of chemotherapeutic treatments, and prioritization of targets for vaccine development. Here, we developed a highly-multiplexed platform based on next-generation high-density peptide microarrays to map these specificities in Chagas Disease, an exemplar of a human infectious disease caused by the protozoan Trypanosoma cruzi. We designed a high-density peptide microarray containing more than 175,000 overlapping 15mer peptides derived from T. cruzi proteins. Peptides were synthesized in situ on microarray slides, spanning the complete length of 457 parasite proteins with fully overlapped 15mers (1 residue shift). Screening of these slides with antibodies purified from infected patients and healthy donors demonstrated both a high technical reproducibility as well as epitope mapping consistency when compared with earlier low-throughput technologies. Using a conservative signal threshold to classify positive (reactive) peptides we identified 2,031 disease-specific peptides and 97 novel parasite antigens, effectively doubling the number of known antigens and providing a 10-fold increase in the number of fine mapped antigenic determinants for this disease. Finally, further analysis of the chip data showed that optimizing the amount of sequence overlap of displayed peptides can increase the protein space covered in a single chip by at least ∼threefold without sacrificing sensitivity. In conclusion, we show the power of high-density peptide chips for the discovery of pathogen-specific linear B-cell epitopes from clinical samples, thus setting the stage for high-throughput biomarker discovery screenings and proteome-wide studies of immune responses against pathogens.Detailed knowledge of antigens and epitopes recognized in the context of naturally acquired human infections has important implications for our understanding of immune system responses against pathogens, and of the immunopathogenesis of infectious diseases. This knowledge is also important for practical clinical applications such as the development of improved vaccines, intervention strategies, and diagnostics.In the last decades, significant progress has been made in the discovery of antigens and epitopes thanks to a number of methodologies such as cDNA expression libraries (1), combinatorial peptide libraries (2), and peptide and protein microarrays (3, 4). However, current knowledge of the B-cell antigens and the epitope repertoire recognized by the immune system in human infections is still scarce. Indeed, the Immune Epitope Database (5) currently contains an average of only 10 antigens with mapped B-cell epitopes recognized from naturally acquired human infections for bacterial or eukaryotic pathogens. The reasons for this are many, but can be largely attributed to different limitations in the mentioned screening technologies. Heterologous expression of cDNA libraries has been used to guide antigen discovery, but mapping of epitopes most often lags behind as it is a much more costly exercise. Similarly, combinatorial peptide libraries greatly facilitate the identification of peptides that are specifically recognized by antibodies, but these peptides have sequences that can greatly differ from those of the native epitopes (they are mimotopes), thus making it difficult to identify the original antigens. As a result, we currently have only limited detailed information on the fine specificities of the antibody response against complex pathogens.The number of tools for studying immune responses has recently expanded with the inclusion of peptide and protein microarrays, which have been used to identify pathogen-specific antigens and linear epitopes (613). Although whole-protein arrays can successfully identify antigens recognized by antibodies, they present the typical difficulties associated with the production of recombinant proteins in heterologous or in vitro systems, do not provide information on the nature and precise location of the epitope(s) in a protein, and are more likely to suffer from nonspecific antibody binding because of the exposure of a large number of potentially antigenic regions. In contrast, peptide arrays can provide exquisite detail of epitope localization, but until now had other limitations mostly associated with their reduced capacity, preventing the complete scanning of large numbers of candidate proteins.Recent advances in computerized photolithography and photochemistry have led to the development of a novel high-density peptide microarray technology, where individual peptides can be synthesized in situ on a glass slide at high densities (1417). This technology makes the production of high-density peptide arrays highly cost effective compared with previous approaches, while allowing the interrogation of complex immune responses with unprecedented throughput and mapping precision. Previous applications of this technology were limited to the fine mapping of epitopes in single proteins, using monoclonal antibodies, or using immunized animal sera as the source of polyclonal antibodies (1618).Using these high-density peptide arrays, we here describe the first large-scale study of fine antibody specificities associated with Chagas Disease, which is an exemplar of a chronic human infectious disease. Chagas Disease, caused by the protozoan Trypanosoma cruzi, is an endemic disease of the Americas, affecting ∼8 million people (19). The parasite invades and replicates within host cells, and briefly enters the bloodstream to reach other target tissues. Initially, the disease goes through an acute stage, characterized by patent parasitaemia and the appearance of antibodies against acute-phase antigens, such as SAPA (20), followed by a delayed specific humoral response. In general, the parasite-specific immune response mounted during T. cruzi infections is insufficient to completely eradicate the pathogen, leading to chronic infection (19). In this chronic stage circulating parasites are difficult to detect, even by extremely sensitive methods such as PCR. Therefore, detection of antibodies against whole-parasite extracts or defined antigens (21, 22) remains the standard for diagnosis of Chagas Disease.In this work, we screened high-density microarray slides containing peptides derived from T. cruzi proteins with mixtures of immunoglobulins purified directly from blood samples of Chagas Disease patients. This led to the identification of novel antigens and the simultaneous mapping of their linear B-cell epitopes, thus demonstrating the capacity and performance of this platform for studying antibody specificities associated with human infectious diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号