首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2873篇
  免费   270篇
  3143篇
  2023年   20篇
  2022年   32篇
  2021年   83篇
  2020年   54篇
  2019年   56篇
  2018年   70篇
  2017年   56篇
  2016年   89篇
  2015年   159篇
  2014年   156篇
  2013年   175篇
  2012年   240篇
  2011年   250篇
  2010年   127篇
  2009年   108篇
  2008年   173篇
  2007年   190篇
  2006年   174篇
  2005年   134篇
  2004年   132篇
  2003年   122篇
  2002年   102篇
  2001年   35篇
  2000年   14篇
  1999年   25篇
  1998年   26篇
  1997年   18篇
  1996年   19篇
  1995年   15篇
  1994年   9篇
  1993年   14篇
  1992年   16篇
  1991年   11篇
  1990年   18篇
  1989年   5篇
  1986年   5篇
  1985年   7篇
  1984年   9篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1978年   6篇
  1977年   7篇
  1974年   8篇
  1973年   11篇
  1971年   5篇
  1970年   5篇
  1964年   6篇
  1961年   5篇
排序方式: 共有3143条查询结果,搜索用时 0 毫秒
61.
Antioxidant activity of twenty five plants from Colombian biodiversity   总被引:1,自引:0,他引:1  
The antioxidant activity of the crude n-hexane, dichloromethane, and methanol extracts from 25 species belonging to the Asteraceae, Euphorbiaceae, Rubiaceae, and Solanaceae families collected at natural reserves from the Eje Cafetero Ecorregión Colombia, were evaluated by using the spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging method. The strongest antioxidant activities were showed by the methanol and dichloromethane extracts from the Euphorbiaceae, Alchornea coelophylla (IC50 41.14 mg/l) and Acalypha platyphilla (IC50 111.99 mg/l), respectively. These two species had stronger DPPH radical scavenging activities than hydroquinone (IC50 151.19 mg/l), the positive control. The potential use of Colombian flora for their antioxidant activities is discussed.  相似文献   
62.
63.
1,3-Butadiene (BD) is a well-documented mutagen and carcinogen in rodents and is currently classified as a probable carcinogen in humans. Studies investigating workers exposed to BD indicate that, in some plants, there may be an increased genetic risk, and that polymorphisms in biotransformation and DNA repair proteins may modulate genetic susceptibility. To investigate the role of genetic polymorphisms in microsomal epoxide hydrolase (mEH) or nucleotide excision repair (NER) in contributing to the mutagenicity of BD, we conducted a series of experiments in which mice lacking mEH or NER activity were exposed to BD by inhalation or to the reactive epoxide metabolites of BD (epoxybutene-EB or diepoxybutane-DEB) by i.p. injection. Genetic susceptibility was measured using the Hprt cloning assay. Both deficient strains of mouse were significantly more sensitive to the mutagenic effects of BD and the injected epoxides. These studies provide support for the critical role that mEH plays in the biotransformation of BD, and the role that NER plays in maintaining genomic integrity following exposure to BD. Additional studies are needed to examine the importance of base excision repair (BER) in maintaining genomic integrity, the differential formation of DNA and protein adducts in deficient strains, and the potential for enhanced sensitivity to BD genotoxicity in mice either lacking or deficient in both biotransformation and DNA repair activity.  相似文献   
64.
65.
Both saline and alkaline conditions frequently coexist in nature; however, little is known about the effects of alkaline and salt?Calkaline stresses on plants. We performed pot experiments with four treatments, control without salt addition and three stress conditions??neutral, alkaline, and mixed salt?Calkaline??to determine their effects on growth, nutrient accumulation and root architecture in the glycophytic species Lotus tenuis. Neutral and alkaline salts produced a similar detrimental effect on L. tenuis growth, whereas the effect of their combination was synergistic. Neutral salt addition, alone or mixed with NaHCO3, led to significant leaf Na+ build up and reduced K+ concentration. In contrast, in plants treated with NaHCO3 only, Na+ levels and the Na+/K+ ratio remained relatively unchanged. Proline accumulation was not affected by the high pH in the absence of NaCl, but it was raised by the neutral salt and mixed treatments. The total root length was reduced by the addition of NaCl alone, whereas it was not affected by alkalinity, regardless of the presence of NaCl. The topological trend showed that alkalinity alone or mixed with NaCl turned the root more herringbone compared with control roots, whereas no significant change in this index was observed in the treatment with the neutral salt only. The pattern of morphological changes in L. tenuis root architecture after the alkaline treatment (in the absence of NaCl) was similar to that found in the mixed salt?Calkaline treatment and different from that observed in neutral salt. A unique root morphological response to the mixed salt?Calkaline stress was the reduction in the ratio between xylem vessels and root cross-sectional areas.  相似文献   
66.
67.
BACKGROUND: Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks. METHODOLOGY/PRINCIPALS FINDINGS: To investigate whether this pattern is present in ancient remains from a temperate environment, we have 454-FLX pyrosequenced different samples dated between 5,500 and 49,000 years ago: a bone from an extinct goat (Myotragus balearicus) that was treated with a depurinating agent (bleach), an Iberian lynx bone not subjected to any treatment, a human Neolithic sample from Barcelona (Spain), and a Neandertal sample from the El Sidrón site (Asturias, Spain). The efficiency of retrieval of endogenous sequences is below 1% in all cases. We have used the non-human samples to identify human sequences (0.35 and 1.4%, respectively), that we positively know are contaminants. CONCLUSIONS: We observed that bleach treatment appears to create a depurination-associated fragmentation pattern in resulting contaminant sequences that is indistinguishable from previously described endogenous sequences. Furthermore, the nucleotide composition pattern observed in 5' and 3' ends of contaminant sequences is much more complex than the flat pattern previously described in some Neandertal contaminants. Although much research on samples with known contaminant histories is needed, our results suggest that endogenous and contaminant sequences cannot be distinguished by the fragmentation pattern alone.  相似文献   
68.
69.
70.
The aim of this study was to use estrus synchronization protocols to favor fixed-time artificial insemination and consequently fixed-time embryo collection, and increase embryo production using eCG, in gits. In a cross over design, nine Piau breed gilts were subjected to 18 days of oral progesterone; P4 group did not receive any further; GnRH group received 25µg of GnRH 104 hours after the final application of P4; and eCG+GnRH group received 1000IU of eCG 24 hours after the final P4 in addition to GnRH for subsequent embryo collection, that was performed six days after first AI, by laparotomy. Artificial insemination was performed after 12 and 24 hours of estrus in P4 group, and 128 and 144 hours in GnRH and eCG+GnRH groups. The number of CL (8.6±3.9; 8.3±2.1; 26.7±15.0) and anovulatory follicles (4.3±3.7; 3.9±3.9; 17.2±9.5) was higher in the eCG+GnRH gilts (P<0.05). However, the use of 1000 IU of eCG reduced (P<0.05) the number of total structures (5.2±3.6; 5.1±3.1; 1.7±2.7), viable embryos (5.0±3.5; 4.8±3.3; 0.4±0.7), freezable embryos (3.6±3.4; 3.3±3.8; 0.1±0.3) and recovery rate (63.7±38.9; 58.6±24.7; 5.38±9.5). P4 and GnRH protocols were effective in the production and recovery of embryos. However, the use of 1000 IU of eCG, 24 hours after P4, was not effective in promoting the production of embryos, although the animals had superovulated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号