首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11017篇
  免费   1161篇
  国内免费   40篇
  2022年   86篇
  2021年   222篇
  2020年   134篇
  2019年   145篇
  2018年   174篇
  2017年   158篇
  2016年   268篇
  2015年   516篇
  2014年   509篇
  2013年   609篇
  2012年   812篇
  2011年   827篇
  2010年   455篇
  2009年   381篇
  2008年   598篇
  2007年   566篇
  2006年   542篇
  2005年   486篇
  2004年   471篇
  2003年   403篇
  2002年   377篇
  2001年   253篇
  2000年   258篇
  1999年   241篇
  1998年   126篇
  1997年   98篇
  1996年   88篇
  1995年   83篇
  1994年   69篇
  1993年   89篇
  1992年   166篇
  1991年   137篇
  1990年   157篇
  1989年   132篇
  1988年   142篇
  1987年   112篇
  1986年   111篇
  1985年   122篇
  1984年   93篇
  1983年   53篇
  1982年   55篇
  1981年   56篇
  1980年   53篇
  1979年   82篇
  1978年   79篇
  1977年   67篇
  1976年   52篇
  1974年   55篇
  1973年   60篇
  1972年   41篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
941.
There is substantial evidence in the literature that elevated plasma free fatty acids (FFA) play a role in the pathogenesis of type 2 diabetes. CVT-3619 is a selective partial A(1) adenosine receptor agonist that inhibits lipolysis and lowers circulating FFA. The present study was undertaken to determine the effect of CVT-3619 on insulin resistance induced by high-fat (HF) diet in rodents. HF diet feeding to rats for 2 wk caused a significant increase in insulin, FFA, and triglyceride (TG) concentrations compared with rats fed chow. CVT-3619 (1 mg/kg) caused a time-dependent decrease in fasting insulin, FFA, and TG concentrations. Acute administration of CVT-3619 significantly lowered the insulin response, whereas glucose response was not different with an oral glucose tolerance test. Treatment with CVT-3619 for 2 wk resulted in significant lowering of FFA, TG, and insulin concentrations in rats on HF diet. To determine the effect of CVT-3619 on insulin sensitivity, hyperinsulinemic euglycemic clamp studies were performed in C57BL/J6 mice fed HF diet for 12 wk. Glucose infusion rate was decreased significantly in HF mice compared with chow-fed mice. CVT-3619 treatment 15 min prior to the clamp study significantly (P < 0.01) increased glucose infusion rate to values similar to that for chow-fed mice. In conclusion, CVT-3619 treatment lowers FFA and TG concentrations and improves insulin sensitivity in rodent models of insulin resistance.  相似文献   
942.
943.
We have previously described the functional activity of a human TCR specific for an HLA-A2-presented peptide derived from the Wilms tumor Ag 1 (WT1). Recent studies showed that the expression and function of human TCR was improved by the introduction of an additional disulfide bond between the alpha- and beta-chains or by the exchange of the human constant region for murine sequences. In this study, we analyzed the functional activity of WT1-TCR variants expressed in Jurkat cells and in primary T cells. The introduction of cysteine residues or murine constant sequences into the WT1-TCR did not result in a global reduction of mispairing with wild-type TCR chains. Instead, the level of mispairing was affected by the variable region sequences of the wild-type TCR chains. The analysis of freshly transduced peripheral blood T cells showed that the transfer of modified TCR constructs generated a higher frequency of Ag-responsive T cells than the transfer of the wild-type TCR. After several rounds of peptide stimulation this difference was no longer observed, as all transduced T cell populations accumulated approximately 90% of Ag-responsive T cells. Although the Ag-responsive T cells expressing the modified TCR bound the HLA-A2/WT1 tetramer more efficiently than T cells expressing the wild-type TCR, this did not improve the avidity of transduced T cells nor did it result in a measurable enhancement in IFN-gamma production and cytotoxic activity. This indicated that the enhanced tetramer binding of modified WT1-TCR variants was not associated with improved WT1-specific T cell function.  相似文献   
944.
The dendritic cell (DC)-based tumor immunotherapy has been a new promise of cure for cancer patients, but animal studies and clinical trials have thus far only shown limited success, especially in treating established tumors. Certain immunosuppressive mechanisms triggered by tumor cells or the derivatives are believed to be a major obstacle. We studied the role of DC-derived IL-10 and its negative impact on vaccine efficacy in mouse models. Liver tumor cells were injected via the portal vein, giving rise to disseminated intrahepatic tumors, or s.c. to form solid but extrahepatic tumors. Bone marrow-derived DCs were generated from normal or IL-10-deficient mice and used as the vector to deliver tumor Ags. We demonstrate here that DCs devoid of IL-10, a potent immunosuppressive cytokine, are superior over conventional DCs in triggering antitumor immunity. The IL-10(-/-)DCs were highly immunogenic, expressed enhanced levels of surface MHC class II molecules, and secreted increased amounts of Th1-related cytokines. By inducing tumor-specific killing and through the establishment of immunological memory, the vaccines delivered by IL-10(-/-)DCs could evoke strong therapeutic and protective immunity against hepatocellular carcinoma in the mouse models. These findings will have great clinical impact once being translated into the treatment of malignant, and potentially infectious, diseases in humans.  相似文献   
945.
The side effects of cancer chemotherapeutic agents such as mitoxantrone (MIT) in multiple sclerosis (MS) patients justify the search for less toxic drugs. Ethonafide is an anthracene-based antineoplastic drug similar to MIT. With reference to MIT, we examined the effect of ethonafide on experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice, an animal model of human MS. We demonstrated that ethonafide is effective in preventing development of EAE as well as in ameliorating the severity of EAE when disease is ongoing. In relatively higher dosages, the effects of ethonafide and MIT on EAE were identical, whereas in lower dosages, MIT seemed more effective. Therapeutic effects of ethonafide were associated with the initial reduction in cellular counts of CD3(+), CD4(+), CD8(+), B220(+), CD11b(+), NK cells, and NKT cells, followed by recovery of these cells from the bone marrow. Interestingly, the recovered autoreactive T cells in ethonafide-treated animals have reduced capacity to expand and produce cytokines in response to myelin Ag stimulation. Furthermore, CD4(+)CD25(+) regulatory T cells were relatively resistant to depletion and/or recovered faster than T effector cells. The ability of regulatory T cells to resist depletion and replenish quickly during cell ablation therapy may provide an opportunity to reprogram the immune system. Moreover, we provided evidences that ethonafide has less cardiac toxicity compared with MIT. The effectiveness and the low cardiotoxicity of ethonafide might make it a promising immunosuppressive agent for clinical use in treating MS patients.  相似文献   
946.
Insulin peptide B:9-23 is a major autoantigen in type 1 diabetes that contains two distinct CD4 epitopes (B:9-16 and B:13-23). One of the two epitopes, B:13-23, overlaps with a CTL epitope (B:15-23). In this study, we report that the elimination of the CTL epitope from the B:9-23 peptide by amino acid substitution (with alanine) at positions B:16 and 19 (A16,19 altered peptide ligand) or truncation of the C-terminal amino acids from the peptide (B:9-21), neither of which stimulated the proliferation of insulin B:15-23 reactive CD8 T cells, provided significant intranasally induced suppression of diabetes when coadministered with a potent mucosal adjuvant cholera toxin (CT). Intranasal treatment with A16,19 resulted in the elimination of spontaneous insulin autoantibodies, significant inhibition of insulitis and remission from hyperglycemia, and prevented the progression to diabetes. Intranasal administration of native B:9-23/CT or B:11-23/CT resulted in a significant enhancement of insulin autoantibody expression and severity of insulitis and failed to prevent diabetes. Our present study indicates that elimination of the CTL epitope from the B:9-23 peptide was critically important for mucosally induced diabetes prevention. The A16,19 altered peptide ligand, but not other native insulin peptides, suppresses insulin autoantibodies associated with protection from and remission of diabetes.  相似文献   
947.
The immune receptors expressed on myeloid cells (IREM) are type I transmembrane proteins encoded on human chromosome 17 (17q25.1), whose function is believed to be important in controlling inflammation. To date, three IREM receptors have been identified. IREM-1 functions as an inhibitory receptor, whereas IREM-2 and IREM-3 serve an activating function. Here, we report the crystal structure of IREM-1 extracellular domain at 2.6 A resolution. The overall fold of IREM-1 resembles that of a V-type immunoglobulin domain, and reveals overall close homology with immunoglobulin domains from other immunoreceptors such as CLM-1, TREM-1, TLT-1 and NKp44. Comparing the surface electrostatic potential and hydrophobicity of IREM-1 with its murine homologous CLM-1, we observed unique structural properties for the complementary determining region of IREM-1, which suggests that they may be involved in recognition of the IREM-1 ligand. Particularly interesting is the structural conformation and physical properties of the antibody's equivalent CDR3 loop, which we show to be a structurally variable region of the molecule and therefore could be the main structural determinant for ligand discrimination and binding. In addition, the analysis of the IREM-1 structure revealed the presence of four structurally different cavities. Three of these cavities form a continuous hydrophobic groove on the IREM-1 surface, which point to a region of the molecule capable of accommodating potential ligands.  相似文献   
948.
Cholesterol is an essential component of the CNS and its metabolism in the brain has been implicated in various neurodegenerative diseases. The oxysterol produced from cholesterol, 24( S )-hydroxycholesterol, is known to be an important regulator of brain cholesterol homeostasis. In this study, we focussed on another oxysterol, 24( S ),25-epoxycholesterol (24,25EC), which has not been studied before in a neurological context. 24,25EC is unique in that it is synthesized in a shunt in the mevalonate pathway, parallel to cholesterol and utilizing the same enzymes. Considering that all the cholesterol present in the brain is derived from de novo synthesis, we investigated whether or not primary human neurons and astrocytes can produce 24,25EC. We found that astrocytes produced more 24,25EC than neurons under basal conditions, but both cell types had the capacity to synthesize this oxysterol when the enzyme 2,3-oxidosqualene cyclase was partially inhibited. Furthermore, both added 24,25EC and stimulated cellular production of 24,25EC (by partial inhibition of 2,3-oxidosqualene cyclase) modulated expression of key cholesterol-homeostatic genes regulated by the liver X receptor and the sterol regulatory element-binding protein-2. Moreover, we found that 24,25EC synthesized in astrocytes can be taken up by neurons and exert downstream effects on gene regulation. In summary, we have identified 24,25EC as a novel neurosterol which plays a likely role in brain cholesterol homeostasis.  相似文献   
949.
Neospora caninum seroprevalence and risk factors affecting seroprevalence in beef cattle in Andorra were investigated. Antibodies to N. caninum were evaluated by enzyme-linked immunosorbent assay performed on a yearly basis in 1,758 animals older than 6 mo, belonging to 26 herds. Mean seroprevalence of antibodies to N. caninum for the herds was 7.4 +/- 1.2% (130/1,758). Logistic regression analyses were performed on data from each animal, considering N. caninum seropositivity as the dependent variable, and herd, grazing area, year of sampling, repeat-test animal (animals sampled twice or more), sex, breed, age (animals <4 yr old or > or =5 yr old), and country of birth as possible risk factors. Based on the odds ratio, the prevalence of infection was 2.1 times higher (P < 0.01) in animals from the Ordino grazing area, 1.64 times higher in animals older than 5 yr (P < 0.01), and 6.7 times (1/0.15) lower in Limousin-mixed Limousin cattle (P < 0.002). The results suggest that the particular grazing location could promote the horizontal transmission of this parasite and that certain breeds are less susceptible to N. caninum infection than others.  相似文献   
950.
The group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) elicited two phases of synchronized neuronal (epileptiform) discharges in hippocampal slices: an initial phase of short duration discharges followed by a phase of prolonged discharges. We assessed the involvement of transient receptor potential canonical (TRPC) channels in these responses. Pre-treatment of hippocampal slices with TRPC channel blockers, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF96365) or 2-aminoethoxydiphenyl borate, did not affect the short epileptiform discharges but blocked the prolonged epileptiform discharges. SKF96365 suppressed ongoing DHPG-induced prolonged epileptiform discharges. Western blot analysis showed that the total TRPC4 or TRPC5 proteins in hippocampal slices were unchanged following DHPG. DHPG increased TRPC4 and TRPC5 in the cytoplasmic compartment and decreased these proteins in the plasma membrane. Translocation of TRPC4 and TRPC5 was suppressed when the epileptiform discharges were blocked by ionotropic glutamate receptor blockers. Translocation of TRPC4 and TRPC5 was also prevented in slices from phospholipase C (PLC) beta1 knockout mice, even when synchronized discharges were elicited by the convulsant 4-aminopyridine. The results suggest that TRPC channels are involved in generating DHPG-induced prolonged epileptiform discharges. This function of TRPC channels is associated with a neuronal activity- and PLCbeta1-dependent translocation of TRPC4 and TRPC5 proteins from the plasmalemma to the cytoplasmic compartment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号