首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3004篇
  免费   289篇
  3293篇
  2023年   21篇
  2022年   33篇
  2021年   87篇
  2020年   57篇
  2019年   62篇
  2018年   77篇
  2017年   59篇
  2016年   94篇
  2015年   163篇
  2014年   158篇
  2013年   181篇
  2012年   243篇
  2011年   252篇
  2010年   134篇
  2009年   112篇
  2008年   175篇
  2007年   190篇
  2006年   179篇
  2005年   137篇
  2004年   136篇
  2003年   127篇
  2002年   107篇
  2001年   31篇
  2000年   15篇
  1999年   27篇
  1998年   29篇
  1997年   19篇
  1996年   23篇
  1995年   19篇
  1994年   12篇
  1993年   16篇
  1992年   20篇
  1991年   14篇
  1990年   24篇
  1989年   11篇
  1988年   7篇
  1986年   9篇
  1985年   12篇
  1984年   13篇
  1983年   10篇
  1982年   10篇
  1981年   8篇
  1980年   8篇
  1978年   6篇
  1977年   7篇
  1974年   8篇
  1973年   11篇
  1971年   6篇
  1970年   6篇
  1964年   6篇
排序方式: 共有3293条查询结果,搜索用时 0 毫秒
51.
Experimental autoimmune uveitis (EAU) serves as an animal model of ocular inflammation. The disease is caused by the immunization of microgram amounts of a soluble retinal protein, designated S-antigen, in susceptible animal strains, including primates. We induced EAU and experimental autoimmune pinealitis (EAP) in Lewis rats with a small synthetic peptide corresponding to amino acid positions 106-121 in yeast histone H3. This peptide contains five consecutive amino acids identical to a uveitopathogenic site (peptide M) in human S-antigen. Lymph node or mononuclear cells from different species of animals immunized either with histone H3 or with peptide M showed significant cross-reaction as measured by in vitro lymphocyte mitogenesis assay using [3H]thymidine. Also, we adoptively transferred the EAU and EAP in naive rats by immune lymph node cells. These findings support the fact that selected bacterial, viral, or fungal proteins with amino acid sequence homologies to normal retinal proteins are uveitopathogenic and, as such, provide a basis for autoimmune inflammatory diseases.  相似文献   
52.
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.The migration of newly born neurons is a precisely regulated process that is critical for the development of brain architecture. Neurons arise from the proliferative epithelium that covers the ventricular space throughout the neural tube, an area named the ventricular zone (VZ). From there, newly born neurons adopt two main strategies to disperse throughout the central nervous system (CNS), designated as radial and tangential migration (Hatten 1999; Marín and Rubenstein 2003). During radial migration, neurons follow a trajectory that is perpendicular to the ventricular surface, moving alongside radial glial fibers expanding the thickness of the neural tube. In contrast, tangentially migrating neurons move in trajectories that are parallel to the ventricular surface and orthogonal to the radial glia palisade (Fig. 1). Besides their relative orientation, some of the basic mechanisms underlying the movement of cells using each of these two modes of migration are also different. For example, radially migrating neurons often use radial glial fibers as substrate, whereas tangentially migrating neurons do not seem to require their support to migrate. Even so, neurons may alternate from radial to tangential movement and vice versa during the course of their migration. This suggests that both types of migrations share common principles, in particular those directly related to the cell biology of movement (Marín et al. 2006).Open in a separate windowFigure 1.Representative migrations in the developing CNS. Multiple migrations coexist during embryonic development at different areas of the central nervous system. This schema summarizes some of these migrations during the second week of the embryonic period in the mouse. Neurons use tangential and radial migration to reach their final destination; both strategies are used by the same neurons at different stages of development (i.e., cortical interneurons in the forebrain and precerebellar neurons in the hindbrain). (IML) intermediolateral region of the spinal cord; (IO) inferior olive nucleus; (LGE) lateral ganglionic eminence; (LRN) lateral reticular nucleus; (MGE) medial ganglionic eminence; (NCx) neocortex; (OB) olfactory bulb.One of the structures that better illustrates how both types of migrations are integrated during brain development is the cerebral cortex, and so we will primarily refer to studies performed on cortical neurons for this review. The adult cerebral cortex contains two main classes of neurons: glutamatergic cortical projection neurons (also known as pyramidal cells) and GABAergic interneurons. Pyramidal cells are generated in the ventricular zone (VZ) of the embryonic pallium—the roof of the telencephalon—and reach their final position by radial migration (Rakic 2007). In contrast, cortical interneurons are born in the subpallium—the base of telencephalon—and reach the cerebral cortex through a long tangential migration (Corbin et al. 2001; Marín and Rubenstein 2001).The earliest cortical neurons form a transient structure known as the preplate, around embryonic day 10 (E10) of gestation age in the mouse. This primordial layer consists of Cajal-Retzius cells and the first cohort of pyramidal neurons, which will eventually populate the subplate. Cajal-Retzius cells, which play important roles during neuronal migration, arise from discrete pallial sources and colonize the entire surface of the cortex through tangential migration (Bielle et al. 2005; Takiguchi-Hayashi et al. 2004; Yoshida et al. 2006). The next cohort of pyramidal cells forms the cortical plate (CP) by intercalating in the preplate and splitting this primitive structure in a superficial layer, the marginal zone (MZ or layer I), and a deep layer, the subplate. The development of the neocortex progresses with new waves of neurons that occupy progressively more superficial positions within the CP (Gupta et al. 2002; Marín and Rubenstein 2003). Birth dating studies have shown that layers II–VI of the cerebral cortex are generated in an “inside-out” sequence. Neurons generated earlier reside in deeper layers, whereas later-born neurons migrate past existing layers to form superficial layers (Angevine and Sidman 1961; Rakic 1974). In parallel to this process, GABAergic interneurons migrate to the cortex, where they disperse tangentially via highly stereotyped routes in the MZ, SP, and lower intermediate zone/subventricular zone (IZ/SVZ) (Lavdas et al. 1999). Interneurons then switch from tangential to radial migration to adopt their final laminar position in the cerebral cortex (Ang et al. 2003; Polleux et al. 2002; Tanaka et al. 2003).  相似文献   
53.
Human porphobilinogen deaminase (PBGD), the third enzyme in the heme pathway, catalyzes four times a single reaction to convert porphobilinogen into hydroxymethylbilane. Remarkably, PBGD employs a single active site during the process, with a distinct yet chemically equivalent bond formed each time. The four intermediate complexes of the enzyme have been biochemically validated and they can be isolated but they have never been structurally characterized other than the apo- and holo-enzyme bound to the cofactor. We present crystal structures for two human PBGD intermediates: PBGD loaded with the cofactor and with the reaction intermediate containing two additional substrate pyrrole rings. These results, combined with SAXS and NMR experiments, allow us to propose a mechanism for the reaction progression that requires less structural rearrangements than previously suggested: the enzyme slides a flexible loop over the growing-product active site cavity. The structures and the mechanism proposed for this essential reaction explain how a set of missense mutations result in acute intermittent porphyria.  相似文献   
54.
We present a new method to measure capsule size in the human fungal pathogen Cryptococcus neoformans that avoids the limitations and biases inherent in India ink measurements. The method is based on the use of gamma-radiation, which efficiently releases the capsule from the cell. By comparing the volume of irradiated and non-irradiated cells, one can accurately estimate the relative size of the capsule per cell. This method was also used to obtain an estimate of the capsule weight and water content. The C. neoformans capsule is a highly hydrated structure in all the conditions measured. However, after capsule enlargement, the amount of capsular polysaccharide significantly increases, suggesting a that capsule growth has a high energy cost for the cell.  相似文献   
55.
Lantibiotics are potent antimicrobial peptides characterized by the presence of dehydrated amino acids, dehydroalanine and dehydrobutyrine, and (methyl)lanthionine rings. In addition to these posttranslational modifications, some lantibiotics exhibit additional modifications that usually confer increased biological activity or stability on the peptide. LtnJ is a reductase responsible for the introduction of d-alanine in the lantibiotic lacticin 3147. The conversion of l-serine into d-alanine requires dehydroalanine as the substrate, which is produced in vivo by the dehydration of serine by a lantibiotic dehydratase, i.e., LanB or LanM. In this work, we probe the substrate specificity of LtnJ using a system that combines the nisin modification machinery (dehydratase, cyclase, and transporter) and the stereospecific reductase LtnJ in Lactococcus lactis. We also describe an improvement in the production yield of this system by inserting a putative attenuator from the nisin biosynthesis gene cluster in front of the ltnJ gene. In order to clarify the sequence selectivity of LtnJ, peptides composed of truncated nisin and different mutated C-terminal tails were designed and coexpressed with LtnJ and the nisin biosynthetic machinery. In these tails, serine was flanked by diverse amino acids to determine the influence of the surrounding residues in the reaction. LtnJ successfully hydrogenated peptides when hydrophobic residues (Leu, Ile, Phe, and Ala) were flanking the intermediate dehydroalanine, while those in which dehydroalanine was flanked by one or two polar residues (Ser, Thr, Glu, Lys, and Asn) or Gly were either less prone to be modified by LtnJ or not modified at all. Moreover, our results showed that dehydrobutyrine cannot serve as a substrate for LtnJ.  相似文献   
56.
In immune complex (IC) diseases, FcR are essential molecules facilitating polymorphonuclear cell (PMN) recruitment and effector functions at the IC site. Although FcR-dependent initial tethering and FcR/integrin-dependent PMN accumulation were postulated, their underlying mechanisms remain unclear. We here addressed potential mechanisms involved in PMN recruitment in acute IC glomerulonephritis (nephrotoxic nephritis). Since some renal cells may be recruited from bone marrow (BM) lineages, reconstitution studies with BM chimeras and PMN transfer between wild-type (WT) and FcR-deficient mice (gamma(-/-)) were performed. Severe glomerular damage was induced in WT and W gamma chimeras (BM from WT to irradiated gamma(-/-)), while it was absent in gamma(-/-) and gamma W chimeras (gamma(-/-) BM to WT). Moreover, WT PMN transfer, but not gamma(-/-) PMN, reconstituted the disease in gamma(-/-), indicating that FcR on resident cells is not a prerequisite for PMN recruitment in this disease. Surprisingly, transferred WT PMN were recruited coincidentally with NF-kappa B activation and TNF-alpha overexpression even in glomeruli with preformed IC (nephrotoxic Ab administered 3 days previously), suggesting that PMN can initially be recruited via its own FcR without previous chemoattractant release. Furthermore, H(2)O(2) inhibition by catalase attenuated the acute WT PMN recruitment and the induction of NF-kappa B and TNF-alpha much more than integrin (CD18) blockade, indicating a role for the respiratory burst before integrin-dependent accumulation. In coculture experiments with IC-stimulated PMN and glomeruli, PMN caused acute glomerular TNF-alpha expression predominantly via FcR-mediated H(2)O(2) production. In conclusion, glomerular IC, even preformed, can cause PMN recruitment and injury through PMN FcR-mediated respiratory burst during initial PMN tethering to IC.  相似文献   
57.
We have defined a new autosomal recessive disorder in patients stemming from a small community in northern Mexico. Diagnosable at birth, its major symptoms include brittle hair, mental retardation, and nail dysplasia. Structural hair abnormalities are seen by both light and electron microscopy. Hair cystine content is reduced while the copper/zinc ratio in hair is increased.  相似文献   
58.
Nocardia globerula strain 432 was able to synthesize triacylglycerols (TAG) during cultivation on 2,6,10,14-tetramethyl pentadecane (pristane) under nitrogen-limiting conditions. Within these cells, 4,8,12-trimethyl tridecanoic acid was the major fatty acid detected. Fatty acids with an odd number of carbon atoms and minor amounts of even-numbered fatty acids were also observed. Experiments carried out with acrylic acid, an inhibitor of beta-oxidation, suggested that odd-numbered fatty acids such as C15:0, C17:0 and 10-methyl C17:0 were synthesized de novo using propionyl-CoA, the beta-oxidation product, as precursor. Although N. globerula 432 incorporated mainly straight chain fatty acids into TAG, the branched fatty acid 4,8,12-trimethyl tridecanoic acid also appeared, to some extent, in the acylglycerols. The importance of TAG biosynthesis by pristane-grown cells of N. globerula strain 432 is discussed.  相似文献   
59.
Planococcus minor (Maskell) is native to South Asia, but it is also present in several Neotropical locations including the island of Trinidad in the southern Caribbean. The mealybug poses a serious threat to uninfested countries in this region as well as the mainland U.S. As part of an effort to gather much needed information on P. minor, 33 cocoa (Theobroma cacao L.) field sites on the island were surveyed in 2006 with a view to assess the occurrence and pest status of the mealybug. P. minor was identified from 20 field sites, indicating that it was well distributed across the island on this crop, which appeared to be a reliable indicator host plant. Infestation levels were generally low and populations were sparsely distributed across the field sites categorized into three habitat types. The following year, nine field sites were surveyed for natural enemies of P. minor using laboratory-infested potatoes in sentinel traps. Species from four insect orders and six families were collected and identified. The major predators belonged to the families Cecidomyiidae and Coccinellidae. Two primary parasitoids, Leptomastix dactylopii Howard (Encyrtidae) and Coccidoxenoides perminutus (Girault) (=Pauridia peregrina Timberlake, =Coccidoxenoides peregrinus (Timberlake)) (Encyrtidae), were reared from different mealybug stages, along with several hyperparasitoids. The primary parasitoids were probably introduced fortuitously. These diverse natural enemies were recovered throughout the sampling period from the different habitat types. The identification of key natural enemies associated with P. minor has important implications for the implementation of biological control in newly infested areas.  相似文献   
60.
Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号