首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7739篇
  免费   509篇
  国内免费   2篇
  2022年   39篇
  2021年   61篇
  2020年   38篇
  2019年   79篇
  2018年   111篇
  2017年   64篇
  2016年   120篇
  2015年   218篇
  2014年   247篇
  2013年   480篇
  2012年   402篇
  2011年   405篇
  2010年   268篇
  2009年   256篇
  2008年   418篇
  2007年   414篇
  2006年   426篇
  2005年   420篇
  2004年   413篇
  2003年   413篇
  2002年   378篇
  2001年   190篇
  2000年   240篇
  1999年   187篇
  1998年   115篇
  1997年   107篇
  1996年   104篇
  1995年   86篇
  1994年   95篇
  1993年   69篇
  1992年   130篇
  1991年   106篇
  1990年   118篇
  1989年   102篇
  1988年   88篇
  1987年   72篇
  1986年   80篇
  1985年   53篇
  1984年   70篇
  1983年   49篇
  1982年   47篇
  1981年   42篇
  1980年   50篇
  1979年   40篇
  1978年   40篇
  1977年   32篇
  1976年   31篇
  1975年   28篇
  1974年   31篇
  1973年   33篇
排序方式: 共有8250条查询结果,搜索用时 250 毫秒
931.
TRAP1 (tumor necrosis factor receptor-associated protein 1) is a member of the molecular chaperone HSP90 (90-kDa heat shock protein) family. In this study, we mainly examined the behavior of Dictyostelium TRAP1 homologue, Dd-TRAP1, during Dictyostelium development by immunoelectron microscopy. In vegetatively growing D. discoideum Ax-2 cells, Dd-TRAP1 locates in nucleolus and vesicles in addition to the cell cortex including cell membrane. Many of Dd-TRAP1 molecules moved to the mitochondrial matrix in response to differentiation, although Dd-TRAP1 on the cell membrane seems to be retained. Some Dd-TRAP1 was also found to be secreted to locate outside the cell membrane in Ax-2 cells starved for 6 h. At the multicellular slug stage, Dd-TRAP1 was primarily located in mitochondria and cell membrane in both prestalk and prespore cells. More importantly, in differentiating prespore cells, a significant number of Dd-TRAP1 locates in the PSV (prespore-specific vacuole) that is a sole cell type-specific organelle and essential for spore wall formation, whereas some Dd-TRAP1 in the cell cortical region of prestalk cells. These findings strongly suggest the importance of Dd-TRAP1 regulated temporally and spatially during Dictyostelium development. Incidentally, we also have certified that the glucose-regulated protein 94 (Dd-GRP94) is predominantly located in Golgi vesicles and cisternae, followed by its colocalization with Dd-TRAP1 in the PSV.  相似文献   
932.
This study examined the endogenous androgen regulation of the marking behavior in Mongolian gerbils (Meriones unguiculatus). In the first experiment, developmental changes of fecal testosterone levels, ventral gland growth, and the marking frequency of male gerbils were investigated. From 9 weeks of age, marking frequency increased with increases in fecal testosterone levels and ventral gland size. The ventral gland size and marking frequency were significantly correlated to the fecal testosterone level. In the second experiment, we hypothesized that reduction in the marking frequency of subordinate males after social confrontations was controlled by a decrease in the circulating testosterone level, and we followed changes in marking frequency, endocrine status, and ventral gland size after social confrontations in which two adult male gerbils established their social ranks by fighting. As expected, marking frequency and ventral gland size were significantly related to social rank, that is, marking frequency was higher among dominant gerbils and lower among subordinates. In addition, fecal corticosterone levels among subordinates were higher than those of dominant animals. However, neither the fecal and plasma testosterone levels, nor testis size, differed between dominant and subordinate gerbils. These results revealed that endogenous androgen played a role in regulating marking behavior and ventral gland size during the developmental stage and that the reductions in marking frequency and ventral gland size occurring in subordinate males after social confrontations were not directly regulated by androgen changes.  相似文献   
933.
The production of polysaccharide-derivatized surfaces, polymers, and biomaterials has been shown to be a useful strategy for mediating the biological properties of materials, owing to the importance of polysaccharides for the sequestration and protection of bioactive proteins in vivo. We have therefore sought to combine the benefits of polysaccharide derivatization of polymers with unique opportunities to use these polymers for the production of bioactive, noncovalently assembled hydrogels. Accordingly, we report the synthesis of a heparin-modified poly(ethylene glycol) (PEG) star copolymer that can be used in the assembly of bioactive hydrogel networks via multiple strategies and that is also competent for the delivery of bioactive growth factors. A heparin-decorated polymer, synthesized by the reaction of thiol end-terminated four-arm star PEG (M(n) = 10 000) with maleimide functionalized low molecular weight heparin (LMWH, M(r) = 3000), has been characterized via (1)H NMR spectroscopy and size-exclusion chromatography; results indicate attachment of the LMWH with at least 73% efficiency. Both covalently and noncovalently assembled hydrogels can be produced from the PEG-LMWH conjugate. Viscoelastic noncovalently assembled hydrogels have been formed on the basis of the interaction of the PEG-LMWH with a PEG polymer bearing multiple heparin-binding peptide motifs. The binding and release of therapeutically important proteins from the assembled hydrogels have also been demonstrated via immunochemical assays, which demonstrate the slow release of basic fibroblast growth factor (bFGF) as a function of matrix erosion. The combination of these results suggests the opportunities for producing polymer-polysaccharide conjugates that can assemble into novel hydrogel networks on the basis of peptide-saccharide interactions and for employing these materials in delivery applications.  相似文献   
934.
Membranes from a stably transfected cell line that expresses the human organic cation 1 transporter (hOCT1) have been immobilized on the immobilized artificial membrane (IAM) liquid chromatographic stationary phase to form the hOCT1(+)-IAM stationary phase. Membranes from the parent cell line that does not express the hOCT1 were also immobilized to create the hOCT1(-)-IAM stationary phase. Columns were created using both stationary phases, and frontal displacement chromatography experiments were conducted using [(3)H]-methyl phenyl pyridinium ([(3)H]-MPP(+)) as the marker ligand and MPP(+), verapamil, quinidine, quinine, nicotine, dopamine and vinblastin as the displacers. The K(d) values calculated from the chromatographic studies correlated with previously reported K(i) values (r(2)=0.9987; p<0.001). The data indicate that the hOCT1(+)-IAM column can be used for the on-line determination of binding affinities to the hOCT1 and that these affinities are comparable to those obtained using cellular uptake studies. In addition, the chromatographic method was able to identify a previously undetected high affinity binding site for MPP(+) and to determine that hOCT1 bound (R)-verapamil to a greater extent than (S)-verapamil.  相似文献   
935.
Distribution of photosystem II (PSII) extrinsic proteins was examined using antibodies raised against various extrinsic proteins from different sources. The results showed that a glaucophyte (Cyanophora paradoxa) having the most primitive plastids contained the cyanobacterial-type extrinsic proteins (PsbO, PsbV, PsbU), and the primitive red algae (Cyanidium caldarium) contained the red algal-type extrinsic proteins (PsO, PsbQ', PsbV, PsbU), whereas a prasinophyte (Pyraminonas parkeae), which is one of the most primitive green algae, contained the green algal-type ones (PsbO, PsbP, PsbQ). These suggest that the extrinsic proteins had been diverged into cyanobacterial-, red algal- and green algal-types during early phases of evolution after a primary endosymbiosis. This study also showed that a haptophyte, diatoms and brown algae, which resulted from red algal secondary endosymbiosis, contained the red algal-type, whereas Euglena gracilis resulted from green algal secondary endosymbiosis contained the green algal-type extrinsic proteins, suggesting that the red algal- and green algal-type extrinsic proteins have been retained unchanged in the different lines of organisms following the secondary endosymbiosis. Based on these immunological analyses, together with the current genome data, the evolution of photosynthetic oxygen-evolving PSII was discussed from a view of distribution of the extrinsic proteins, and a new model for the evolution of the PSII extrinsic proteins was proposed.  相似文献   
936.
We found that CEL-I was a potent cytotoxic lectin. MDCK, HeLa, and XC cells were highly sensitive to CEL-I cytotoxicity and killed in a dose-dependent manner, whereas CHO, L929, and RAW264.7 cells were relatively resistant to CEL-I, and no significant toxicity was observed up to 10 microg/ml. Among these cell lines, MDCK cells showed the highest susceptibility to CEL-I cytotoxicity. A binding study using FITC-labeled CEL-I (F-CEL-I) revealed that the amounts of bound F-CEL-I on the sensitive cell lines were evidently greater than those on the resistant cell lines, suggesting that the different susceptibility of the cell lines to CEL-I cytotoxicity is partly explained by different efficiencies of binding of CEL-I to these cell lines. Interestingly, the cytotoxicity of CEL-I toward MDCK cells was more potent than those of other lectins such as WGA, PHA-L, and Con A, even though these lectins were capable of binding to MDCK cells at comparable levels to CEL-I. Since the cytotoxicity of CEL-I was strongly inhibited by GalNAc, the binding to cell surface specific carbohydrates is essential for the CEL-I cytotoxicity. The trypan blue dye exclusion test indicated that CEL-I caused a disorder of plasma membrane integrity as a relatively early event. CEL-I failed to induce the release of carboxyfluorescein (CF) from CF-loaded MDCK cells as seen for pore-forming hemolytic isolectin CEL-III, suggesting that the primary cellular target of CEL-I may be the plasma membrane, but its action mechanism differs from that of CEL-III. Although CEL-I induced dramatic cellular morphological changes in MDCK cells, neither typical apoptotic nuclear morphological changes nor DNA fragmentation was observed in CEL-I-treated MDCK cells even after such cellular changes. Our results demonstrated that CEL-I showed a potent cytotoxic effect, especially on MDCK cells, by causing plasma membrane disorder without induction of apoptosis.  相似文献   
937.
Mavicyanin, a glycosylated protein isolated from Cucurbita pepo medullosa (zucchini), is a member of the phytocyanin subfamily containing one polypeptide chain of 109 amino residues and an unusual type-I Cu site in which the copper ligands are His45, Cys86, His91, and Gln96. The crystal structures of oxidized and reduced mavicyanin were determined at 1.6 and 1.9 A resolution, respectively. Mavicyanin has a core structure of seven polypeptide beta-strands arranged as a beta-sandwich organized into two beta-sheets, and the structure considerably resembles that of stellacyanin from cucumber (CST) or cucumber basic protein (CBP). A flexible region was not observed on superimpositioning of the oxidized and reduced mavicyanin structures. However, the Cu(II)-epsilon-O-Gln96 bond length was extended by 0.47 A, and the Thr15 residue was rotated by 60.0 degrees and O-gamma1-Thr15 moved from a distance of 4.78 to 2.58 A from the ligand Gln96 forming a new hydrogen bond between O-gamma1-Thr15 and epsilon-O-Gln96 upon reduction. The reorganization of copper coordination geometry of mavicyanin upon reduction arouses reduction potential decreased above pH 8 [Battistuzzi et al. (2001) J. Inorg. Biochem. 83, 223-227]. The rotation of Thr15 and the hydrogen bonding with the ligand Gln96 may constitute structural evidence of the decrease in the reduction potential at high pH.  相似文献   
938.
939.
The vesicular integral protein of 36 kDa (VIP36) is an intracellular animal lectin that acts as a putative cargo receptor, which recycles between the Golgi and the endoplasmic reticulum. Although it is known that VIP36 interacts with glycoproteins carrying high mannose-type oligosaccharides, detailed analyses of the sugar-binding specificity that discriminates isomeric oligosaccharide structures have not yet been performed. In the present study, we have analyzed, using the frontal affinity chromatography (FAC) method, the sugar-binding properties of a recombinant carbohydrate recognition domain of VIP36 (VIP36-CRD). For this purpose, a pyridylaminated sugar library, consisting of 21 kinds of oligosaccharides, including isomeric structures, was prepared and subjected to FAC analyses. The FAC data have shown that glucosylation and trimming of the D1 mannosyl branch interfere with the binding of VIP36-CRD. VIP36-CRD exhibits a bell-shaped pH dependence of sugar binding with an optimal pH value of approximately 6.5. By inspection of the specificity and optimal pH value of the sugar binding of VIP36 and its subcellular localization, together with the organellar pH, we suggest that VIP36 binds glycoproteins that retain the intact D1 mannosyl branch in the cis-Golgi network and recycles to the endoplasmic reticulum where, due to higher pH, it releases its cargos, thereby contributing to the quality control of glycoproteins.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号