首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3270篇
  免费   147篇
  国内免费   1篇
  2022年   20篇
  2021年   28篇
  2020年   12篇
  2019年   30篇
  2018年   46篇
  2017年   24篇
  2016年   73篇
  2015年   109篇
  2014年   109篇
  2013年   256篇
  2012年   182篇
  2011年   183篇
  2010年   116篇
  2009年   147篇
  2008年   208篇
  2007年   182篇
  2006年   198篇
  2005年   197篇
  2004年   208篇
  2003年   193篇
  2002年   200篇
  2001年   23篇
  2000年   26篇
  1999年   30篇
  1998年   49篇
  1997年   49篇
  1996年   44篇
  1995年   33篇
  1994年   40篇
  1993年   38篇
  1992年   19篇
  1991年   15篇
  1990年   25篇
  1989年   18篇
  1988年   22篇
  1987年   22篇
  1986年   23篇
  1985年   16篇
  1984年   14篇
  1983年   13篇
  1982年   23篇
  1981年   23篇
  1980年   24篇
  1979年   11篇
  1978年   18篇
  1977年   10篇
  1976年   11篇
  1975年   6篇
  1974年   8篇
  1973年   7篇
排序方式: 共有3418条查询结果,搜索用时 15 毫秒
81.
Several epidemiological and preclinical studies suggest that non‐steroidal anti‐inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β‐amyloid (Aβ) production and inhibit neuroinflammation. However, follow‐up clinical trials, mostly using selective cyclooxygenase (COX)‐2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX‐1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro‐inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX‐1 inhibition, rather than COX‐2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20‐month‐old triple transgenic AD (3 × Tg‐AD) mice with the COX‐1 selective inhibitor SC‐560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC‐560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg‐AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX‐1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg‐AD mice. Thus, selective COX‐1 inhibition should be further investigated as a potential therapeutic approach for AD.  相似文献   
82.
In secretory granules and vesicles, membrane transporters have been predicted to permeate water molecules, ions and/or small solutes to swell the granules and promote membrane fusion. We have previously demonstrated that aquaporin-6 (AQP6), a water channel protein, which permeates anions, is localized in rat parotid secretory granules (Matsuki-Fukushima et al., Cell Tissue Res 332:73–80, 2008). Because the localization of AQP6 in other organs is restricted to cytosolic vesicles, the native function or functions of AQP6 in vivo has not been well determined. To characterize the channel property in granule membranes, the solute permeation-induced lysis of purified secretory granules is a useful marker. To analyze the role of AQP6 in secretory granule membranes, we used Hg2+, which is known to activate AQP6, and investigated the characteristics of solute permeability in rat parotid secretory granule lysis induced by Hg2+ (Hg lysis). The kinetics of osmotic secretory granule lysis in an iso-osmotic KCl solution was monitored by the decay of optical density at 540 nm using a spectrophotometer. Osmotic secretory granule lysis was markedly facilitated in the presence of 0.5–2.0 μM Hg2+, concentrations that activate AQP6. The Hg lysis was completely blocked by β-mercaptoethanol which disrupts Hg2+-binding, or by removal of chloride ions from the reaction medium. An anion channel blocker, DIDS, which does not affect AQP6, discriminated between DIDS-insensitive and sensitive components in Hg lysis. These results suggest that Hg lysis is required for anion permeability through the protein transporter. Hg lysis depended on anion conductance with a sequence of NO3 ? > Br? > I? > Cl? and was facilitated by acidic pH. The anion selectivity for NO3 ? and the acidic pH sensitivity were similar to the channel properties of AQP6. Taken together, it is likely that AQP6 permeates halide group anions as a Hg2+-sensitive anion channel in rat parotid secretory granules.  相似文献   
83.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.  相似文献   
84.
Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb (Ras homologue enriched in brain) is one of the most important upstream regulators of mTORC1. Here, we attempted to clarify the role of Rheb in the heart using cardiac-specific Rheb-deficient mice (Rheb−/−). Rheb−/− mice died from postnatal day 8 to 10. The heart-to-body weight ratio, an index of cardiomyocyte hypertrophy, in Rheb−/− was lower than that in the control (Rheb+/+) at postnatal day 8. The cell surface area of cardiomyocytes isolated from the mouse hearts increased from postnatal days 5 to 8 in Rheb+/+ mice but not in Rheb−/− mice. Ultrastructural analysis indicated that sarcomere maturation was impaired in Rheb−/− hearts during the neonatal period. Rheb−/− hearts exhibited no difference in the phosphorylation level of S6 or 4E-BP1, downstream of mTORC1 at postnatal day 3 but showed attenuation at postnatal day 5 or 8 compared with the control. Polysome analysis revealed that the mRNA translation activity decreased in Rheb−/− hearts at postnatal day 8. Furthermore, ablation of eukaryotic initiation factor 4E-binding protein 1 in Rheb−/− mice improved mRNA translation, cardiac hypertrophic growth, sarcomere maturation, and survival. Thus, Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after early postnatal period.  相似文献   
85.
Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H2O2-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.  相似文献   
86.
A novel series of pyrrolidine derivatives as Na+ channel blockers was synthesized and evaluated for their inhibitory effects on neuronal Na+ channels. Structure–activity relationship (SAR) studies of a pyrrolidine analogue 2 led to the discovery of 5e as a potent Na+ channel blocker with a low inhibitory action against human ether-a-go-go-related gene (hERG) channels. Compound 5e showed remarkably neuroprotective activity in a rat transient middle cerebral artery occlusion (MCAO) model, suggesting that 5e would act as a neuroprotectant for ischemic stroke.  相似文献   
87.
Indoleamine 2,3-dioxygenase (IDO) plays a significant role in several disorders such as Alzheimer’s disease, age-related cataracts and tumors. A series of novel tryptoline derivatives were synthesized and evaluated for their inhibitory activity against IDO. Substituted tryptoline derivatives (11a, 11c, 11e, 12b and 12c) were demonstrated to be more potent than known inhibitor MTH-Trp. Suzuki–Miyaura cross-coupling reaction of 11ad with phenylboronic acid proceeded in high yields. In most cases, C5 and C6 substitutions on the corresponding indole ring were well tolerated. The tryptoline derivative 11c is a promising chemical lead for the discovery of novel IDO inhibitors.  相似文献   
88.
Purified glycerol oxidase from Aspergillus japonicus AT 008 was homogeneous by ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be 400,000 by sedimentation equilibrium, and the isoelectric point was found to be 4.9 by isoelectric focusing. The enzyme showed spectral characteristics of a heme protein. The reduced form possessed absorption maxima at 557 and 430 nm and the oxidized one at 557, 530, 420, 280, and 238 nm. The heme in the enzyme was identified as protoheme IX (one mol per mol of enzyme protein).

Glycerol was the best substrate for the enzyme, and the Km value for glycerol was determined to be 10.4 mm. Dihydroxyacetone was oxidized at 59% of that for glycerol, but glycerol 3-phosphate, dihydroxyacetone phosphate, methanol, and ethanol were not oxidized at all. The enzyme had an optimal pH at 7.0 with glycerol as substrate, and the enzymatic activity increased by treatment in alkaline pH. The enzyme was also activated by addition of several divalent metal ions including Zn2+, Ni2+, and Mg2+.  相似文献   
89.
The reactions of N-acetylchitooligosaccharides with chitinolytic enzyme were analyzed by HPLC using a Tosoh TSK-Gel amide-80 column with 70% acetonitrile as an eluent. We separated α and β anomeric forms of N-acetylchitooligosaccharides, and obtain the following advantages of this HPLC method.

1. We can easily identify the reaction mechanism of chitinolytic enzymes by this method, distinguishing the inverting mechanism showing α anomer formation from the retaining mechanism showing β anomer formation.

2. We can also estimate the cleavage patterns of N-acetylchitooligosaccharides by chitinolytic enzymes by using natural substrates.  相似文献   
90.
The antifungal activity of 441-acyl derivatives of 3-(3,5-dichlorophenyl)-2,4-imidazol- idinedione against Botrytis cinerea, and of 10 1-sulfonyl compounds against Aiternaria kikuchi- ana were assayed by the agar medium dilution method. The structure-activity relationships for the substituents of the acyl and sulfonyl moieties were analyzed with such physicochemical parameters as hydrophobic π, inductive electronic σ1, and steric Ecs and B1 values by multiple regression. The activity of the acyl derivatives against B. cinerea was related parabolically to the hydrophobicity of the substituents. The stronger the electron-donating power, the larger the overall steric bulkiness, and the smaller the minimum width in the direction perpendicular to the bond axis of the substituents, the greater was the activity. The activity of the sulfonyl derivatives against A. kikuciana was related only to the hydrophobicity of the substituents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号