首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3962篇
  免费   165篇
  国内免费   1篇
  4128篇
  2022年   25篇
  2021年   38篇
  2020年   21篇
  2019年   33篇
  2018年   48篇
  2017年   29篇
  2016年   82篇
  2015年   122篇
  2014年   125篇
  2013年   328篇
  2012年   205篇
  2011年   201篇
  2010年   130篇
  2009年   162篇
  2008年   229篇
  2007年   220篇
  2006年   232篇
  2005年   226篇
  2004年   241篇
  2003年   227篇
  2002年   233篇
  2001年   64篇
  2000年   52篇
  1999年   52篇
  1998年   54篇
  1997年   51篇
  1996年   48篇
  1995年   41篇
  1994年   46篇
  1993年   41篇
  1992年   41篇
  1991年   31篇
  1990年   45篇
  1989年   21篇
  1988年   40篇
  1987年   36篇
  1986年   38篇
  1985年   26篇
  1984年   23篇
  1983年   18篇
  1982年   28篇
  1981年   26篇
  1980年   24篇
  1979年   12篇
  1978年   17篇
  1977年   11篇
  1976年   15篇
  1975年   7篇
  1974年   11篇
  1973年   9篇
排序方式: 共有4128条查询结果,搜索用时 11 毫秒
91.
BackgroundThe efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation.MethodsMale BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group.ResultsBlood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14.ConclusionsThe efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.  相似文献   
92.
93.
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.  相似文献   
94.
95.
Mitochondrial fission facilitates cytochrome c release from the intracristae space into the cytoplasm during intrinsic apoptosis, although how the mitochondrial fission factor Drp1 and its mitochondrial receptors Mff, MiD49, and MiD51 are involved in this reaction remains elusive. Here, we analyzed the functional division of these receptors with their knockout (KO) cell lines. In marked contrast to Mff-KO cells, MiD49/MiD51-KO and Drp1-KO cells completely resisted cristae remodeling and cytochrome c release during apoptosis. This phenotype in MiD49/51-KO cells, but not Drp1-KO cells, was completely abolished by treatments disrupting cristae structure such as OPA1 depletion. Unexpectedly, OPA1 oligomers generally thought to resist cytochrome c release by stabilizing the cristae structure were similarly disassembled in Drp1-KO and MiD49/51-KO cells, indicating that disassembly of OPA1 oligomers is not directly linked to cristae remodeling for cytochrome c release. Together, these results indicate that Drp1-dependent mitochondrial fission through MiD49/MiD51 regulates cristae remodeling during intrinsic apoptosis.  相似文献   
96.
BackgroundAlthough several computer-aided computed tomography (CT) analysis methods have been reported to objectively assess the disease severity and progression of idiopathic pulmonary fibrosis (IPF), it is unclear which method is most practical. A universal severity classification system has not yet been adopted for IPF.ObjectiveThe purpose of this study was to test the correlation between quantitative-CT indices and lung physiology variables and to determine the ability of such indices to predict disease severity in IPF.MethodsA total of 27 IPF patients showing radiological UIP pattern on high-resolution (HR) CT were retrospectively enrolled. Staging of IPF was performed according to two classification systems: the Japanese and GAP (gender, age, and physiology) staging systems. CT images were assessed using a commercially available CT imaging analysis workstation, and the whole-lung mean CT value (MCT), the normally attenuated lung volume as defined from −950 HU to −701 Hounsfield unit (NL), the volume of the whole lung (WL), and the percentage of NL to WL (NL%), were calculated.ResultsCT indices (MCT, WL, and NL) closely correlated with lung physiology variables. Among them, NL strongly correlated with forced vital capacity (FVC) (r = 0.92, P <0.0001). NL% showed a large area under the receiver operating characteristic curve for detecting patients in the moderate or advanced stages of IPF. Multivariable logistic regression analyses showed that NL% is significantly more useful than the percentages of predicted FVC and predicted diffusing capacity of the lungs for carbon monoxide (Japanese stage II/III/IV [odds ratio, 0.73; 95% confidence intervals (CI), 0.48 to 0.92; P < 0.01]; III/IV [odds ratio. 0.80; 95% CI 0.59 to 0.96; P < 0.01]; GAP stage II/III [odds ratio, 0.79; 95% CI, 0.56 to 0.97; P < 0.05]).ConclusionThe measurement of NL% by threshold-based volumetric CT analysis may help improve IPF staging.  相似文献   
97.
98.
BPAG1 (bullous pemphigoid antigen 1) was originally identified as a 230-kDa hemidesmosomal protein and belongs to the plakin family, because it consists of a plakin domain, a coiled-coil rod domain and a COOH-terminal intermediate filament binding domain. To date, alternatively spliced products of BPAG1, BPAG1e, and BPAG1n are known. BPAG1e is expressed in epithelial tissues and localized to hemidesmosomes, on the other hand, BPAG1n is expressed in neural tissues and muscles and has an actin binding domain at the NH(2)-terminal of BPAG1e. BPAG1 is also known as a gene responsible for Dystonia musculorum (dt) neurodegeneration syndrome of the mouse. Another plakin family protein MACF (microtubule actin cross-linking factor) has also an actin binding domain and the plakin domain at the NH(2)-terminal. However, in contrast to its high homology with BPAG1 at the NH(2)-terminal, the COOH-terminal structure of MACF, including a microtubule binding domain, resembles dystrophin rather than plakins. Here, we investigated RNAs and proteins expressed from the BPAG1 locus and suggest novel alternative splicing variants, which include one consisting of the COOH-terminal domain structure homologous to MACF. The results indicate that BPAG1 has three kinds of cytoskeletal binding domains and seems to play an important role in linking the different types of cytoskeletons.  相似文献   
99.
We previously reported that extracellular sphingomyelinase induces sphingomyelin hydrolysis in osteoblast-like MC3T3-E1 cells and that mitogen-activated protein (MAP) kinases are involved in bone morphogenetic protein (BMP)-4-stimulated osteocalcin synthesis in these cells. In the present study, we investigated whether sphingomyelinase affects BMP-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. Sphingomyelinase significantly enhanced the BMP-4-stimulated osteocalcin synthesis. Among sphingomyelin metabolites, C(2)-ceramide enhanced the BMP-4-stimulated osteocalcin synthesis while sphingosine and sphingosine 1-phosphate had little effect on the synthesis. D-erythro-MAPP, an inhibitor of ceramidase, amplified the sphingomyelinase-effect on the osteocalcin synthesis. C(2)-ceramide suppressed the BMP-4-induced phosphorylation of p44/p42 MAP kinase, while having little effect on the phosphorylation of Smad1 and p38 MAP kinase. Taken together, our results strongly suggest that extracellular sphingomyelinase enhances the BMP-stimulated osteocalcin synthesis via ceramide in osteoblasts and that the effect of ceramide is exerted at a point upstream from p44/p42 MAP kinase.  相似文献   
100.
Fks1p and Fks2p are catalytic subunits of beta-1,3-glucan synthase, which synthesize beta-1,3-glucan, a main component of the cell wall in Saccharomyces cerevisiae. Although Fks1p and Fks2p are highly homologous, sharing 88.1% identity, it has been shown that Fks2p is more sensitive than Fks1p to one of echinocandin derivatives, which inhibits beta-1,3-glucan synthase activity. Here we show a similar differential sensitivity between Fks1p and Fks2p to a novel beta-1,3-glucan synthase inhibitor, aerothricin3 [corrected]. To investigate the molecular mechanism of this differential sensitivity, we constructed a series of chimeric genes of FKSs and examined their sensitivity to aerothricin3 [corrected]. As a result, it was shown that a region around the fourth extracellular domain of Fks2p, containing 10 different amino acid residues from those of Fks1p, provided Fks1p aerothricin3 [corrected] sensitivity when the region was replaced with a corresponding region of Fks1p. In order to identify essential amino acid residues responsible for the sensitivity, each of the 10 non-conserved amino acids of Fks1p was substituted into the corresponding amino acid of Fks2p by site-directed mutagenesis. Surprisingly, only one amino acid substitution of Fks1p (K1336I) conferred Fks1p hypersensitivity to aerothricin3 [corrected]. On the other hand, reverse substitution of the corresponding amino acid of Fks2p (I1355K) resulted in loss of hypersensitivity to aerothricin3 [corrected]. These results suggest that the 1355th isoleucine of Fks2p plays a key role in aerothricin3 [corrected] sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号