首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7985篇
  免费   486篇
  国内免费   1篇
  2022年   44篇
  2021年   75篇
  2020年   28篇
  2019年   61篇
  2018年   85篇
  2017年   76篇
  2016年   137篇
  2015年   219篇
  2014年   237篇
  2013年   504篇
  2012年   405篇
  2011年   416篇
  2010年   247篇
  2009年   286篇
  2008年   415篇
  2007年   382篇
  2006年   443篇
  2005年   407篇
  2004年   456篇
  2003年   382篇
  2002年   401篇
  2001年   214篇
  2000年   199篇
  1999年   201篇
  1998年   111篇
  1997年   114篇
  1996年   84篇
  1995年   75篇
  1994年   96篇
  1993年   80篇
  1992年   117篇
  1991年   120篇
  1990年   116篇
  1989年   97篇
  1988年   94篇
  1987年   83篇
  1986年   113篇
  1985年   93篇
  1984年   95篇
  1983年   75篇
  1982年   64篇
  1981年   61篇
  1980年   50篇
  1979年   59篇
  1978年   51篇
  1977年   41篇
  1976年   38篇
  1975年   22篇
  1974年   33篇
  1973年   28篇
排序方式: 共有8472条查询结果,搜索用时 15 毫秒
931.
Suitable alterations in gene expression are believed to allow animals to survive drastic changes in environmental conditions. Drosophila melanogaster larvae cease eating and exit moist food to search for dry pupation sites after the foraging stage in what is known as the wandering stage. Although the behavioral change from foraging to wandering causes desiccation stress, the mechanism by which Drosophila larvae protect themselves from desiccation remains obscure. Here, we identified a gene, CG14686 (designated as Desiccate (Desi)), whose expression was elevated during the wandering stage. The Desi expression level was reversibly decreased by transferring wandering larvae to wet conditions and increased again by transferring them to dry conditions. Elevation of Desi expression was also observed in foraging larvae when they were placed in dry conditions. Desi encoded a 261-amino acid single-pass transmembrane protein with notable motifs, such as SH2 and PDZ domain-binding motifs and a cAMP-dependent protein kinase phosphorylation motif, in the cytoplasmic region, and its expression was observed mainly in the epidermal cells of the larval integuments. Overexpression of Desi slightly increased the larval resistance to desiccation stress during the second instar. Furthermore, Desi RNAi larvae lost more weight under dry conditions, and subsequently, their mortalities significantly increased compared with control larvae. Under dry conditions, consumption of carbohydrate was much higher in Desi RNAi larvae than control larvae. Based on these results, it is reasonable to conclude that Desi contributes to the resistance of Drosophila larvae to desiccation stress.  相似文献   
932.
Ras family small GTPases assume two interconverting conformations, “inactive” state 1 and “active” state 2, in their GTP-bound forms. Here, to clarify the mechanism of state transition, we have carried out x-ray crystal structure analyses of a series of mutant H-Ras and M-Ras in complex with guanosine 5′-(β,γ-imido)triphosphate (GppNHp), representing various intermediate states of the transition. Crystallization of H-RasT35S-GppNHp enables us to solve the first complete tertiary structure of H-Ras state 1 possessing two surface pockets unseen in the state 2 or H-Ras-GDP structure. Moreover, determination of the two distinct crystal structures of H-RasT35S-GppNHp, showing prominent polysterism in the switch I and switch II regions, reveals a pivotal role of the guanine nucleotide-mediated interaction between the two switch regions and its rearrangement by a nucleotide positional change in the state 2 to state 1 transition. Furthermore, the 31P NMR spectra and crystal structures of the GppNHp-bound forms of M-Ras mutants, carrying various H-Ras-type amino acid substitutions, also reveal the existence of a surface pocket in state 1 and support a similar mechanism based on the nucleotide-mediated interaction and its rearrangement in the state 1 to state 2 transition. Intriguingly, the conformational changes accompanying the state transition mimic those that occurred upon GDP/GTP exchange, indicating a common mechanistic basis inherent in the high flexibility of the switch regions. Collectively, these results clarify the structural features distinguishing the two states and provide new insights into the molecular basis for the state transition of Ras protein.  相似文献   
933.
Although noradrenaline (NA), a stress-associated neurotransmitter, seems to affect the immune system, the precise mechanisms underlying NA-mediated immunoregulation are not fully understood. We examined the effect of NA on Ag uptake (endocytosis) by dendritic cells (DCs) using murine bone marrow-derived DCs and fluorescence-labeled endocytic tracers (dextran and OVA). Ag uptake by DCs notably increased following a very brief treatment (3 min) with NA. NA-induced endocytosis was completely blocked by treatment with α(2)-adrenoceptor antagonist yohimbine. Neither α(1)-adrenoceptor antagonist prazosin nor β-adrenoceptor antagonist propranolol affected NA-induced endocytosis by DCs. A selective α(2)-adrenoceptor agonist, azepexole (B-HT 933), also significantly increased endocytosis by DCs. Thus, the α(2)-adrenoceptor seems to be responsible for NA-induced DC endocytosis. In parallel, NA markedly activated intracellular signaling pathways of PI3K and ERK1/2 in DCs. NA-mediated activation of these pathways was completely inhibited by yohimbine treatment. Blocking PI3K activation significantly reduced NA-induced endocytosis by DCs. Based on these results, NA rapidly enhances Ag capture by DCs via α(2) adrenoceptor-mediated PI3K activation, which may be associated with immune enhancement following acute stress.  相似文献   
934.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   
935.
A dynamic cycle of O-linked GlcNAc (O-GlcNAc) addition and removal is catalyzed by O-GlcNAc transferase and O-GlcNAcase, respectively, in a process that serves as the final step in a nutrient-driven "hexosamine-signaling pathway." Evidence points to a role for O-GlcNAc cycling in diabetes and insulin resistance. We have used Drosophila melanogaster to determine whether O-GlcNAc metabolism plays a role in modulating Drosophila insulin-like peptide (dilp) production and insulin signaling. We employed transgenesis to either overexpress or knock down Drosophila Ogt(sxc) and Oga in insulin-producing cells (IPCs) or fat bodies using the GAL4-UAS system. Knockdown of Ogt decreased Dilp2, Dilp3, and Dilp5 production, with reduced body size and decreased phosphorylation of Akt in vivo. In contrast, knockdown of Oga increased Dilp2, Dilp3, and Dilp5 production, increased body size, and enhanced phosphorylation of Akt in vivo. However, knockdown of either Ogt(sxc) or Oga in the IPCs increased the hemolymph carbohydrate concentration. Furthermore, phosphorylation of Akt stimulated by extraneous insulin in an ex vivo cultured fat body of third instar larvae was diminished in strains subjected to IPC knockdown of Ogt or Oga. Knockdown of O-GlcNAc cycling enzymes in the fat body dramatically reduced neutral lipid stores. These results demonstrate that altered O-GlcNAc cycling in Drosophila IPCs modulates insulin production and influences the insulin responsiveness of peripheral tissues. The observed phenotypes in O-GlcNAc cycling mimic pancreatic β-cell dysfunction and glucose toxicity related to sustained hyperglycemia in mammals.  相似文献   
936.
Over the past decades there has been considerable progress in understanding the multifunctional roles of mitochondrial ion channels in metabolism, energy transduction, ion transport, signaling, and cell death. Recent data have suggested that some of these channels function under physiological condition, and others may be activated in response to pathological insults and play a key role in cytoprotection. This review outlines our current understanding of the molecular identity and pathophysiological roles of the mitochondrial ion channels in the heart with particular emphasis on cardioprotection against ischemia/reperfusion injury, and future research on mitochondrial ion channels.  相似文献   
937.
Monoclonal antibodies (MAbs) 50.69, 98.6, and T26 bind specifically to the core structure of the human immunodeficiency virus type 1 (HIV-1) envelope transmembrane glycoprotein (gp41). To clarify the specificity of the anti-core structure MAbs, we performed competitive assays using the MAbs to the H9 human T cell line infected with the IIIB strain of HIV-1 (H9/IIIB). Bound MAb 50.69 inhibited MAb 98.6 binding unidirectionally. The reason for the unidirectional cross competition between MAbs 50.69 and 98.6 is not clear, but these results help to define the antigenic structure of gp41 on the surface of infected cells.  相似文献   
938.
To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C. albicans, the assay endpoint of azoles was defined as inhibition of mycelial extension (mMIC) and for A. fumigatus, as no growth (MIC). The MICs of amphotericin B for both pathogens were defined as the MIC at which no mycelial growth occurred. Serum MIC or mMIC determinations were then used to estimate the concentration of the drugs in serum of mice treated with antifungal drugs by multiplying the antifungal titer of the serum samples by the serum (m)MIC. The serum drug concentrations were also determined by HPLC. The serum concentrations estimated microbiologically showed good agreement with those determined by HPLC, except for itraconazole. Analysis of the serum samples from itraconazole-treated mice by a sensitive bioautography revealed the presence of additional spots, not seen in control samples of itraconazole. The bioautography assay demonstrated that the additional material detected in serum from mice treated with itraconazole was an active metabolite of itraconazole. The data showed that the apparent reduction in the itraconazole serum concentration as determined by HPLC was the result of the formation of an active metabolite, and that the use of a microbiological method to measure serum concentrations of drugs can provide a method for prediction of in vivo efficacy of antifungal drugs.  相似文献   
939.
A gene for cytochrome P450 (moxA) from Nonomuraea recticatena, coexpressed with camAB for pseudomonad redox partners in Escherichia coli, hydroxylated oleanolic acid to produce queretaroic acid. When we used the P450-induced whole-cell as a catalyst, only a small amount of queretaroic acid was produced, probably due to poor permeability of oleanolic acid into the E. coli cell. In an alternative approach with the cell-free reaction system, the conversion ratio increased up to 17%.  相似文献   
940.
The intestinal epithelia consists of four lineages of differentiated cells, all of which arise from stem cells residing in the intestinal crypt. For proper regeneration from epithelial damage, both expansion of the epithelial cell number and appropriate regulation of lineage differentiation from the remaining stem cells are thought to be required. In a series of studies, we have shown that bone-marrow derived cells could promote the regeneration of damaged epithelia in the human intestinal tract. Donor-derived epithelial cells substantially repopulated the gastrointestinal tract of bone-marrow transplant recipients during epithelial regeneration after graft-versus-host disease. Furthermore, precise analysis of epithelial cell lineages revealed that during epithelial regeneration, secretory lineage epithelial cells that originated from bone-marrow significantly increased in number. These findings may lead to a novel therapy to repair damaged intestinal epithelia using bone marrow cells, and provide an alternative therapy for refractory inflammatory bowel diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号