首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7985篇
  免费   486篇
  国内免费   1篇
  2022年   44篇
  2021年   75篇
  2020年   28篇
  2019年   61篇
  2018年   85篇
  2017年   76篇
  2016年   137篇
  2015年   219篇
  2014年   237篇
  2013年   504篇
  2012年   405篇
  2011年   416篇
  2010年   247篇
  2009年   286篇
  2008年   415篇
  2007年   382篇
  2006年   443篇
  2005年   407篇
  2004年   456篇
  2003年   382篇
  2002年   401篇
  2001年   214篇
  2000年   199篇
  1999年   201篇
  1998年   111篇
  1997年   114篇
  1996年   84篇
  1995年   75篇
  1994年   96篇
  1993年   80篇
  1992年   117篇
  1991年   120篇
  1990年   116篇
  1989年   97篇
  1988年   94篇
  1987年   83篇
  1986年   113篇
  1985年   93篇
  1984年   95篇
  1983年   75篇
  1982年   64篇
  1981年   61篇
  1980年   50篇
  1979年   59篇
  1978年   51篇
  1977年   41篇
  1976年   38篇
  1975年   22篇
  1974年   33篇
  1973年   28篇
排序方式: 共有8472条查询结果,搜索用时 390 毫秒
861.
Stromal cell-derived factor 1 (SDF-1) cooperates with cytokines to promote hematopoiesis. Here we demonstrate that SDF-1 activates Erk synergistically with interleukin-3 (IL-3) in hematopoietic cells. Small GTPases Ras and Rac were prominently activated by IL-3 and SDF-1, respectively. In accordance with this, Raf-1 was significantly activated by IL-3 but not by SDF-1. SDF-1 strongly induced phosphorylation of Raf-1 on S338, the target site for the Rac effector Paks, and enhanced the IL-3-induced activation of Raf-1 and MEK. Furthermore, the synergistic activation of Erk was inhibited by expression of a dominant-negative mutant of Pak1 or that of Rac and was enhanced by an activated mutant of Pak1. SDF-1 and IL-3 also showed synergistic effects on expansion of hematopoietic cells and on induction of chemotaxis, which were both inhibited by the MEK inhibitor PD98059. These results suggest that SDF-1 synergistically enhances IL-3-induced Erk activation by up-regulating Raf-1 activity through the Rac effector Pak kinases to promote hematopoiesis.  相似文献   
862.
A study was conducted to evaluate a net value of exogenous (dietary) protein nutrition in rats fed a [15N]-labeled soy protein isolate (SPI). Although [15N]-SPI-derived nitrogen reached a plateau 2 hr after feeding, it accounted for only a half of the total nitrogen in the small intestine. 15N was confirmed that was normally transported to liver, kidney, spleen, and brain. The present study reveals the large degree of participation of endogenous proteins in dietary SPI during small-intestinal digestion.  相似文献   
863.
Toll-like receptor 2 (TLR2) has been shown to mediate cell signaling in response to microbial cell wall components, such as peptidoglycan, lipoteichoic acid, microbial lipoprotein, and zymosan. In this study, we cloned the swine TLR2 and used it to transfect Chinese hamster ovary K-1 cells. We demonstrated that the swine TLR2-expressing transfectant can bind not only zymosan from yeast cell wall components but also intact lactic acid bacteria, resulting in the activation of nuclear factor-kappaB. These findings suggest that the swine TLR2-expressing transfectant can be very useful for the primary screening of immunobiotic microorganisms.  相似文献   
864.
The virulence of Yersinia enterocolitica is known to be highly dependent on its virulence plasmid. However, it remains unclear whether the virulence plasmid is engaged also in the induction of cell-mediated immunity that is essential for protective immunity in the host. In this study, we have compared the induction of type 1 helper T cell immunity against Y. enterocolitica using a virulent strain (P+) harboring the pYV plasmid and an avirulent strain (P-) harboring no pYV. Spleen cells from both groups of mice immunized with 1/10 LD50 of P+ strain and those with 1/10 LD50 of P- strain produced a high level of gamma interferon (IFN-gamma) upon stimulation with heat-killed bacteria, and CD4+ T cells were exclusively responsible for IFN-gamma production. When crude Yersinia outer proteins (Yops) were used for antigenic stimulation, IFN-gamma response of immune spleen cells against crude Yops was observed only in mice immunized with P+ strain. Flowcytometric analysis revealed a significant level of increase in IFN-gamma-producing CD8+ T cells as well as the increase in IFN-gamma-producing CD4+ T cells against crude Yops. These results suggest that the virulence plasmid of Y. enterocolitica is involved in the induction of Th1-type of possibly protective T cells in infected mice.  相似文献   
865.
Protein 4.1 families have recently been established as potential organizers of an adherens system. In the adult mouse testis, protein 4.1G (4.1G) localized as a line pattern in both basal and adluminal compartments of the seminiferous tubules, attaching regions of germ cells and Sertoli cells. By double staining for 4.1G and F-actin, their localizations were shown to be different, indicating that 4.1G was localized in a region other than the basal and apical ectoplasmic specializations, which formed the Sertoli–Sertoli cell junction and Sertoli–spermatid junction, respectively. By electron microscopy, immunoreactive products were seen exclusively on the cell membranes of Sertoli cells, attaching to the various differentiating germ cells. The immunolocalization of cadherin was identical to that of 4.1G, supporting the idea that 4.1G may be functionally interconnected with adhesion molecules. In an experimental mouse model of cadmium treatment, in which tight and adherens junctions of seminiferous tubules were disrupted, the 4.1G immunostaining in the seminiferous tubules was dramatically decreased. These results indicate that 4.1G may have a basic adhesive function between Sertoli cells and germ cells from the side of Sertoli cells.  相似文献   
866.
Protein 4.1 G localizes in rodent microglia   总被引:2,自引:2,他引:0  
Although it was reported that protein 4.1 G, a cytoskeletal protein characterized by its general expression in the body, interacts with some signal transduction molecules in the central nervous system (CNS), its distribution and significance in vivo remained to be elucidated. In the present study, we have identified 4.1 G-positive cells in the rodent CNS, and demonstrated its immunolocalization in the developing mouse CNS. In the rodent CNS, 4.1 G was colocalized with markers for microglia, such as CD45, OX-42 and ionized calcium-binding adapter molecule 1 (Iba1), but not with markers for neuronal or other glial cells. Additionally, colocalization of 4.1 G and A1 adenosine receptor was observed in the mouse cerebrum. In a mixed glial culture, most OX-42-positive microglia were positive for 4.1 G, and 4.1 G isoforms of the same molecular weight as in the rat brain were expressed in cultured microglia, where 4.1 G mRNA was detected by RT-PCR. In the developing mouse cerebral cortex, 4.1 G was detected in immature microglia, which were positive for Iba1. These results indicate that 4.1 G in the CNS is mainly distributed in microglia in vivo. Considering the interactions between 4.1 G and the signal transduction molecules, putative roles have been propsed for 4.1 G in microglial functions in the CNS.  相似文献   
867.
Progenitor cells exist in the adult pancreas and transform to endocrine cells in pathological conditions. To address the mechanism of beta cell regeneration, mice were treated with streptozotocin (STZ group) or streptozotocin and exendin-4 (STZ + Ex-4 group), and the expression of PDX-1, Ngn3, insulin, IRS-2, and Foxo1 was investigated. PDX-1 mRNA was upregulated biphasically and induction of Ngn3 mRNA occurred shortly after the first increase of PDX-1 expression, a pattern similar to that observed during embryogenesis. PDX-1-positive cells appeared only in islet-like cell clusters (ICCs) in STZ group, but they appeared both in ducts and ICCs in STZ + Ex-4 group. Ngn3-positive cells emerged in ICCs but not in ducts. Therefore, regeneration seemed to occur mainly from intra-islet stem/progenitor cells. Exendin-4 upregulated PDX-1 expression which paralleled increased IRS-2 expression and translocation of Foxo1 from nucleus to cytoplasm. Further analysis of beta cell regeneration should help in the design of novel therapy for diabetes.  相似文献   
868.
Mechanisms and significance of bifunctional NK4 in cancer treatment   总被引:4,自引:0,他引:4  
Based on the background that hepatocyte growth factor (HGF) and c-Met/HGF receptor tyrosine kinase play a definite role in tumor invasion and metastasis, NK4, four-kringles containing intramolecular fragment of HGF, was isolated as a competitive antagonist for the HGF-c-Met system. Independent of its HGF-antagonist action, NK4 inhibited angiogenesis induced by vascular endothelial cell growth factor and basic fibroblast growth factor, as well as HGF, indicating that NK4 is a bifunctional molecule that acts as an HGF-antagonist and angiogenesis inhibitor. Interestingly, kringle domains in distinct types of proteins, e.g., plasminogen, prothrombin, plasminogen activators, apolipoprotein(a), and HGF, share angioinhibitory actions. In experimental models of distinct types of cancers, NK4 protein administration or NK4 gene therapy inhibited tumor invasion, metastasis, and angiogenesis-dependent tumor growth. Cancer treatment with NK4 may prove to suppress malignant tumors to be 'static' in both tumor growth and spreading, as based on biological characteristics of malignant tumors.  相似文献   
869.
870.
In the present study, we examined a novel lipid removal method, centrifugation in solutions made hypertonic by adding 0.27 M sugar. This allowed the lipid to be extruded and removed without the loss of active mitochondria or extra cytoplasm. The type of sugar influenced the proportion of oocytes that could be stratified by centrifugation. Glucose induced the highest extrusion rate of lipid droplets. After vitrification the rates of survival, germinal vesicle breakdown and metaphase II were 30, 26, and 7%, respectively, for lipid-removed GV oocytes; this was significantly higher (P<0.05) than for corresponding vitrified lipid-intact oocytes (2, 0, and 0%, respectively). These results indicated that this method is useful to remove whole lipid droplets without losing mitochondria and improves cryotolerance of porcine GV oocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号