首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3304篇
  免费   138篇
  国内免费   1篇
  3443篇
  2022年   19篇
  2021年   25篇
  2020年   12篇
  2019年   30篇
  2018年   42篇
  2017年   22篇
  2016年   69篇
  2015年   106篇
  2014年   109篇
  2013年   255篇
  2012年   180篇
  2011年   180篇
  2010年   112篇
  2009年   148篇
  2008年   209篇
  2007年   185篇
  2006年   203篇
  2005年   202篇
  2004年   212篇
  2003年   201篇
  2002年   205篇
  2001年   33篇
  2000年   37篇
  1999年   31篇
  1998年   53篇
  1997年   49篇
  1996年   43篇
  1995年   33篇
  1994年   40篇
  1993年   37篇
  1992年   20篇
  1991年   17篇
  1990年   26篇
  1989年   18篇
  1988年   21篇
  1987年   23篇
  1986年   23篇
  1985年   15篇
  1984年   14篇
  1983年   15篇
  1982年   23篇
  1981年   22篇
  1980年   20篇
  1979年   10篇
  1978年   14篇
  1977年   8篇
  1976年   11篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
排序方式: 共有3443条查询结果,搜索用时 15 毫秒
51.
Nostocine A (1) is an extracellular cytotoxic violet pigment produced by the freshwater cyanobacterium, Nostoc spongiaeforme TISTR 8169. Treatment with 1 was found to accelerate the generation of reactive oxygen species (ROS) in the green alga, Chlamydomonas reinhardtii, in the light. In vitro analysis revealed that 1 specifically eliminated superoxide radical anion (O(2)(-)) among several ROS tested. During the course of the reaction, oxygen (O(2)) was simultaneously synthesized and the O(2) synthesizing rate increased with the amount of 1 added. In contrast, O(2)(-) generation occurred when NADPH or NADH was added to a solution of 1 under aerobic condition. The reduction potential of 1 is very similar to that of O(2) indicating that 1 and O(2) can easily exchange electrons depending on the mass balance between their oxidized and reduced forms. Based on these results, the following hypothesis is formulated for the mechanism of intracellular ROS generation by treatment with 1: 1 taken into the target cells is reduced specifically by intracellular reductants such as NAD(P)H. When the O(2) level is sufficiently higher than that of 1, the reduced product of 1 is immediately oxidized by O(2). This is accompanied by the synthesis of O(2)(-) from O(2). The generation of O(2)(-) successively occurs, undergoing repeated redox cycles of 1, when the levels of the reductant and O(2) are still dominant to promote these reactions. This similar intracellular ROS generation mechanism to that of paraquat may cause the cytotoxicity.  相似文献   
52.
To identify erythroid-specific heme-regulated genes, we performed differential expression analysis between wild-type and heme-deficient erythroblasts, which had been prepared from wild-type and erythroid-specific delta-aminolevulinate synthase-null mouse ES cells, respectively. Among 8737 clones on cDNA array, 40 cDNA clones, including 34 unknown ESTs, were first selected by their high expression profiles in wild-type erythroblasts, and evaluated further for their erythroid-lineage specificity, expression in hematopoietic tissues in vivo, and heme-dependent expression, which yielded 11, 4, and 4 genes, respectively. Because of the selection strategy employed, the final 4 were considered as the newly identified erythroid-specific heme-regulated genes. These 4 genes were uncoupling protein 2, nucleolar spindle-associated protein, cellular nucleic acid-binding protein, and a novel acetyltransferase-like protein. These findings thus suggest that heme may regulate a wide variety of hitherto unrecognized genes, and further analysis of these genes may clarify their role in erythroid cell differentiation.  相似文献   
53.
The identification of drug-responsive biomarkers in complex protein mixtures is an important goal of quantitative proteomics. Here, we describe a novel approach for identifying such drug-induced protein alterations, which combines 2-nitrobenzenesulfenyl chloride (NBS) tryptophan labeling with two-dimensional gel electrophoresis (2DE)/mass spectrometry (MS). Lysates from drug-treated and control samples are labeled with light or heavy NBS moiety and separated on a common 2DE gel, and protein alterations are identified by MS through the differential intensity of paired NBS peptide peaks. Using NBS/2DE/MS, we profiled the proteomic alterations induced by tamoxifen (TAM) in the estrogen receptor (ER) positive MCF-7 breast cancer cell line. Of 88 protein spots that significantly changed upon TAM treatment, 44 spots representing 23 distinct protein species were successfully identified with NBS-paired peptides. Of these 23 TAM-altered proteins, 16 (70%) have not been previously associated with TAM or ER activity. We found the NBS labeling procedure to be both technically and biologically reproducible, and the NBS/2DE/MS alterations exhibited good concordance with conventional 2DE differential protein quantitation, with discrepancies largely due to the comigration of distinct proteins in the regular 2DE gels. To validate the NBS/2DE/MS results, we used immunoblotting to confirm GRP78, CK19, and PA2G4 as bona fide TAM-regulated proteins. Furthermore, we demonstrate that PA2G4 expression can serve as a novel prognostic factor for disease-free survival in two independent breast cancer patient cohorts. To our knowledge, this is the first report describing the proteomic changes in breast cancer cells induced by TAM, the most commonly used selective estrogen receptor modulator (SERM). Our results indicate that NBS/2DE/MS may represent a more reliable approach for cellular protein quantitation than conventional 2DE approaches.  相似文献   
54.
55.
Synaptophysin is an integral membrane protein abundant in the synaptic vesicle and is found in nerve terminals throughout the brain. It was recently suggested that synaptophysin is also involved in the modulation of activity-dependent synapse formation. In this study, we examined at the individual level whether tactile stimulation selectively influenced the synaptophysin mRNA expression level in the somatosensory cortex of rats. Anesthetized rats were caressed on the back by an experimenter's palms for 20 min and the mRNA expression levels in the somatosensory and the visual cortices 5 min afterwards were determined using quantitative PCR methodology. The synaptophysin mRNA expression level was selectively higher in the experimental group than in the control group in the somatosensory cortex but not in the visual cortex. This suggests that the mRNA expression level of synaptophysin induced by neuronal activity is related to the regulation of synapse formation or remodeling or both.  相似文献   
56.
57.
Pyrrolysine-tRNA(Pyl) complex is produced by pyrrolysyl-tRNA synthetase (PylRS). In this study, we investigated the substrate specificity of Desulfitobacterium hafnience PylRS. PylRS incorporated various L-lysine derivatives into tRNA(Pyl) in vitro. In addition, the PylRS/tRNA(Pyl) pair introduced these lysine derivatives into the recombinant protein by the Escherichia coli expression system, indicating that this PylRS/tRNA(Pyl) pair can be used in protein engineering technology.  相似文献   
58.
Fibroblast-collagen matrix contraction has been used as a model system to study how cells organize connective tissue. Previous work showed that lysophosphatidic acid (LPA)-stimulated floating collagen matrix contraction is independent of Rho kinase while platelet-derived growth factor (PDGF)-stimulated contraction is Rho kinase-dependent. The current studies were carried out to determine the signaling mechanisms of basic fibroblast growth factor (bFGF)-stimulated fibroblast-collagen matrix contraction. Both bFGF and LPA promoted equally collagen matrix contraction well. Three different inhibitors, LY294002 for phosphatidylinositol-3-kinase (PI3K), C3 exotransferase for Rho and Y27632 for Rho kinase, suppressed the bFGF-stimulated fibroblast-collagen matrix contraction. With bFGF stimulation, fibroblasts spread with prominent stress fiber network formation and focal adhesions. In the presence of Rho kinase inhibitor, focal adhesions and stress fibers were mostly lost. We demonstrated that bFGF stimulation for fibroblast caused transient Rac and Rho activation but did not activate Cdc42. In addition, bFGF enhanced fibroblast migration in wound healing assay. The present study implicates PI3K, Rac, Rho, and Rho kinase as being involved in bFGF-stimulated collagen matrix contraction. The elucidation of bFGF-triggered signal transduction may be an important clue to understand the roles of bFGF in wound healing.  相似文献   
59.
Saito  On  Kobayashi  Tatsuya  Hiroi  Maiko  Kawatsu  Masayuki  Takagi  Shun  Nishihiro  Jun  Kagami  Maiko 《Limnology》2019,20(1):21-28
Limnology - Trapa spp. dominate many shallow eutrophic lakes in Japan, which must affect the nutrient dynamics in lakes. Trapa spp. are utilized by several animals, in particular the leaf beetle,...  相似文献   
60.
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号