首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10231篇
  免费   671篇
  国内免费   1篇
  10903篇
  2022年   59篇
  2021年   107篇
  2019年   91篇
  2018年   115篇
  2017年   101篇
  2016年   182篇
  2015年   284篇
  2014年   322篇
  2013年   612篇
  2012年   482篇
  2011年   524篇
  2010年   357篇
  2009年   372篇
  2008年   509篇
  2007年   512篇
  2006年   498篇
  2005年   508篇
  2004年   551篇
  2003年   500篇
  2002年   458篇
  2001年   322篇
  2000年   315篇
  1999年   284篇
  1998年   143篇
  1997年   115篇
  1996年   103篇
  1995年   90篇
  1994年   87篇
  1993年   93篇
  1992年   148篇
  1991年   156篇
  1990年   156篇
  1989年   137篇
  1988年   133篇
  1987年   147篇
  1986年   126篇
  1985年   103篇
  1984年   83篇
  1983年   55篇
  1982年   70篇
  1981年   69篇
  1980年   46篇
  1979年   64篇
  1978年   64篇
  1977年   62篇
  1974年   60篇
  1973年   63篇
  1972年   42篇
  1969年   50篇
  1968年   50篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Summary The gene secY (or prlA) is essential for protein export across the cytoplasmic membrane of Escherichia coli. The protein product of secY has been identified using the gene cloned under the control of the pL promoter of phage in combination with the maxicell system. The protein was found to have some unusual properties. First, it is important not to heat the protein at 100°C in the SDS sample buffer for its subsequent detection by gel electrophoresis. Second, migration of the protein in SDS-polyacrylamide gel electrophoresis is variable depending on the gel compositions. Gels with stronger sieving effect give higher apparent molecular weights. These properties are similar to those of hydrophobic proteins of the cytoplasmic membrane, such as the lactose permease. Finally, a major fraction of the protein synthesized from the overproducing plasmid is degraded rapidly in vivo. The altered protein from the secY24 mutant gene is even more unstable. These results provide information which is basic for the dissection of the protein export machinery of the bacterial cell.  相似文献   
52.
53.
The Escherichia coli gene secY (pr1A) codes for an integral membrane protein that plays an essential role in protein export. We previously isolated cold-sensitive mutations (ssy) as extragenic suppressors of temperature-sensitive secY24 mutation. Now we show that the ssyG class of mutations are within infB coding for the translation initiation factor IF2. The mutants produce altered forms of IF2 with a cold-sensitive in vitro activity to form a translation initiation complex. The mutation suppresses not only secY24 but also other secretion-defective mutations such as secA51 and rp10215. The beta-galactosidase enzyme activity of the MalE-LacZ 72-47 hybrid protein is strikingly reduced in the ssyG mutant at the permissive high temperature, while the hybrid protein itself is normally synthesized. This effect, which was observed only for the hybrid protein with a functional signal sequence, may result from some alteration in the cellular localization of the protein. These results suggest that IF2 or the translation initiation step can modulate protein export reactions. The isolation of cold-sensitive ssyG mutations in infB provides genetic evidence that IF2 is indeed essential for normal growth of E. coli cells.  相似文献   
54.
55.
Antibodies were raised against the sequence Glu-Glu-Glu-Glu-Tyr-Met-Pro-Met -Glu, which represents a part of the middle T antigen of polyomavirus that is considered to be important in inducing the phenotype of transformed cells. The antibodies reacted with native as well as denatured middle T antigens. In addition, the antibodies immunoprecipitated a cellular protein with an apparent molecular weight of 130,000 (130K) from mouse and rat cells. In some cases, a 33K protein was also immunoprecipitated. Immunoprecipitation of middle T antigen as well as 130K and 33K proteins was blocked by the peptide. The antibodies labeled microfilaments of untransformed mouse, rat, human, and chicken cells by immunofluorescence. This labeling was also blocked by the peptide. The labeling pattern and distribution under a variety of conditions were indistinguishable from those of anti-actin antibodies, although no evidence has been obtained to indicate that the anti-peptide antibodies react with actin. The 130K protein migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis slightly slower than chicken gizzard vinculin (130K) and slightly faster than myosin light-chain kinase of chicken smooth muscle (130K). Neither of these proteins absorbed the anti-peptide antibodies. The 33K protein does not seem to be tropomyosin (32K to 40K).  相似文献   
56.
Flowering in the short-day plant Lemna paucicostata 6746 canbe induced under continuous light by the addition of ferricyanie,ferrocyanide or KCN to M-sucrose medium. Each substance is nearly10 times more effective when the flasks are covered by glassbeakers than when cotton plugs are used. By contrast, when floweringis induced under continuous light by copper or by short-daytreatment, neither flowering nor growth are affected by whetherglass beakers or cotton plugs are used. Ferricyanide, ferrocyanideand KCN are also able to induce long-day flowering when theplants are grown on Msucrose medium in small beakers that areplaced in a covered storage dish that also contains a solutionof one of these compounds. Addition of a KOH trap to the storagedish completely blocks the flowering induced by these compounds.If [14C]ferrocyanide is added to the storage dish both the M-sucrosemedium and the plants contain significant amounts of radioactivity,the amount of radioactivity being proportional to the floweringresponse. These results indicate that ferricyanide, ferrocyanideand KCN break down to release HCN and that it is the HCN whichis responsible for inducing flowering in L. paucicostata 6746under continuous light. 1Present address: Department of Biology, Osaka Kyoiku University,Ikeda, Osaka 563, Japan. 2Present address: Institute of Horticulture, The Volcani Center,P. O. B. 6, Bet-Dagan, Israel. (Received January 17, 1983; Accepted March 24, 1983)  相似文献   
57.
K Ito  M Wittekind  M Nomura  K Shiba  T Yura  A Miura  H Nashimoto 《Cell》1983,32(3):789-797
A temperature-sensitive E. coli mutant with a mutation in the spc ribosomal protein operon was found to have a conditional defect in the processing of precursor proteins destined for the periplasmic space or the outer membrane. At high temperatures, significant amounts of precursor proteins having unprocessed signal sequences are detected in the mutant cell by pulse-labeling. The precursors are processed at very slow rates during a subsequent chase. Genetic analysis indicates that the mutation impairs the function of a gene, termed secY, located at the promoter-distal part of the spc operon. The secY gene is distinct from those genes previously known to specify ribosomal proteins, yet it is within the spc operon. It is suggested that the product of the secY gene is a component of the cellular apparatus that is essential for protein secretion across the cytoplasmic membrane. The gene secY is probably identical with prlA, previously identified as a suppressor of signal sequence mutations.  相似文献   
58.
To test the effects of food value on the flower choice, individual honeybees (Apis mellifera) were offered a choice of 25 % sucrose solution (SS) and 1 of 6 different SSs, ranging from 5 % to 50 % SS, at either a low or a high flower density. Artificial flowers were filled with each SS. The honeybees showed a stronger preference for a concentrated SS to a diluted SS at a high than at a low flower density, and the degree of preference was positively correlated to the difference in the sucrose concentration between paired SSs. These foraging patterns were consistent with qualitative predictions from optimal foraging theory. Furthermore, it was found that experience in feeding on a concentrated SS lowered the foraging motivation for a diluted SS at the high flower density, but not at the low flower density. I discuss the effects of food density, food profitability and experience on the foraging behaviour of honeybees.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号