首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   16篇
  268篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   13篇
  2012年   12篇
  2011年   13篇
  2010年   14篇
  2009年   9篇
  2008年   17篇
  2007年   26篇
  2006年   17篇
  2005年   17篇
  2004年   22篇
  2003年   21篇
  2002年   27篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   8篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有268条查询结果,搜索用时 0 毫秒
31.
Tange Y  Niwa O 《Genetics》2008,179(2):785-792
The core proteins of the spindle assembly checkpoint (SAC), Mads, Bubs, and Mps1, first identified in the budding yeast, are thought to be functionally and structurally conserved through evolution. We found that fission yeast Bub3 is dispensable for SAC, as bub3 null mutants blocked mitotic progression when spindle formation was disrupted. Consistently, the bub3 mutation only weakly affected the stability of minichromosome Ch16 compared with other SAC mutants. Fission yeast Rae1 has sequence homology with Bub3. The bub3 rae1 double mutant and rae1 single mutant did not have defective SAC, suggesting that these genes do not have overlapping roles for SAC. Observations of living cells revealed that the duration of the mitotic prometaphase/metaphase was longer in the bub3 mutant and was Mad2 dependent. Further, the bub3 mutant was defective in sister centromere association during metaphase. Together, these findings suggest that fission yeast Bub3 is required for normal spindle dynamics, but not for SAC.  相似文献   
32.
The complete nucleotide sequence of the plastid genome of the unicellular primitive red alga Cyanidioschyzon merolae 10D (Cyanidiophyceae) was determined. The genome is a circular DNA composed of 149,987 bp with no inverted repeats. The G + C content of this plastid genome is 37.6%. The C. merolae plastid genome contains 243 genes, which are distributed on both strands and consist of 36 RNA genes (3 rRNAs, 31 tRNAs, tmRNA, and a ribonuclease P RNA component) and 207 protein genes, including unidentified open reading frames. The striking feature of this genome is the high degree of gene compaction; it has very short intergenic distances (approximately 40% of the protein genes were overlapped) and no genes have introns. This genome encodes several genes that are rarely found in other plastid genomes. A gene encoding a subunit of sulfate transporter (cysW) is the first to be identified in a plastid genome. The cysT and cysW genes are located in the C. merolae plastid genome in series, and they probably function together with other nuclear-encoded components of the sulfate transport system. Our phylogenetic results suggest that the Cyanidiophyceae, including C. merolae, are a basal clade within the red lineage plastids.  相似文献   
33.
34.
35.
Vav proteins are multidomain signaling molecules critical for mediating signals downstream of several surface receptors, including the antigen receptors of T and B lymphocytes. The catalytic guanine nucleotide exchange factor (GEF) activity of the Vav Dbl homology (DH) domain is thought to be controlled by an intramolecular autoinhibitory mechanism involving an N-terminal extension and phosphorylation of tyrosine residues in the acidic region (AC). Here, we report that the sequences surrounding the Vav1 AC: Tyr(142), Tyr(160), and Tyr(174) are evolutionarily conserved, conform to consensus SH2 domain binding motifs, and bind several proteins implicated in TCR signaling, including Lck, PI3K p85alpha, and PLCgamma1, through direct interactions with their SH2 domains. In addition, the AC tyrosines regulate tyrosine phosphorylation of Vav1. We also show that Tyr(174) is required for the maintenance of TCR-signaling microclusters and for normal T cell development and activation. In this regard, our data demonstrate that while Vav1 Tyr(174) is essential for maintaining the inhibitory constraint of the DH domain in both developing and mature T cells, constitutively activated Vav GEF disrupts TCR-signaling microclusters and leads to defective T cell development and proliferation.  相似文献   
36.

Background

Imaging the behavior of RNA in a living cell is a powerful means for understanding RNA functions and acquiring spatiotemporal information in a single cell. For more distinct RNA imaging in a living cell, a more effective chemical method to fluorescently label RNA is now required. In addition, development of the technology labeling with different colors for different RNA would make it easier to analyze plural RNA strands expressing in a cell.

Methodology/Principal Findings

Tag technology for RNA imaging in a living cell has been developed based on the unique chemical functions of exciton-controlled hybridization-sensitive oligonucleotide (ECHO) probes. Repetitions of selected 18-nucleotide RNA tags were incorporated into the mRNA 3′-UTR. Pairs with complementary ECHO probes exhibited hybridization-sensitive fluorescence emission for the mRNA expressed in a living cell. The mRNA in a nucleus was detected clearly as fluorescent puncta, and the images of the expression of two mRNAs were obtained independently and simultaneously with two orthogonal tag–probe pairs.

Conclusions/Significance

A compact and repeated label has been developed for RNA imaging in a living cell, based on the photochemistry of ECHO probes. The pairs of an 18-nt RNA tag and the complementary ECHO probes are highly thermostable, sequence-specifically emissive, and orthogonal to each other. The nucleotide length necessary for one tag sequence is much shorter compared with conventional tag technologies, resulting in easy preparation of the tag sequences with a larger number of repeats for more distinct RNA imaging.  相似文献   
37.
Cytochromes P450 (P450s) catalyze monooxygenation of a wide range of less reactive organic molecules under mild conditions. By contrast with the general reductive oxygen activation pathway of P450s, an H2O2-shunt pathway does not require any supply of electrons and protons for the generation of a highly reactive intermediate (compound I). Because the low cost of H2O2 allows us to use it in industrial-scale synthesis, the H2O2-shunt pathway is an attractive process for monooxygenation reactions. This review focuses on the P450-catalyzed monooxygenation of organic molecules using H2O2 as the oxidant.  相似文献   
38.
To understand the spatiotemporal changes in cellular status that occur during embryonic development, it is desirable to detect simultaneously the expression of genes, proteins, and epigenetic modifications in individual embryonic cells. A technique termed methylation-specific fluorescence in situ hybridization (MeFISH) was developed recently that can visualize the methylation status of specific DNA sequences in cells fixed on a glass slide. Here, we adapted this glass slide-based MeFISH to the study of intact embryos, and established a method called whole-mount MeFISH. This method can be applied to any DNA sequences in theory and, as a proof-of-concept experiment, we examined the DNA methylation status of satellite repeats in developing mouse primordial germ cells, in which global DNA demethylation is known to take place, and obtained a result that was consistent with previous findings, thus validating the MeFISH method. We also succeeded in combining whole-mount MeFISH with immunostaining or RNA fluorescence in situ hybridization (RNA-FISH) techniques by adopting steps to retain signals of RNA-FISH or immunostaining after harsh denaturation step of MeFISH. The combined methods enabled the simultaneous visualization of DNA methylation and protein or RNA expression at single-cell resolution without destroying embryonic and nuclear structures. This whole-mount MeFISH technique should facilitate the study of the dynamics of DNA methylation status during embryonic development with unprecedented resolution.  相似文献   
39.
40.
We examined the inhibitory effect of a single ingestion of bread containing resistant starch (bread containing about 6 g of resistant starch derived from tapioca per 2 slices) (test food) on the postprandial increase in blood glucose in male and female adults with a fasting blood glucose level between 100 and 140 mg/dl. Bread not containing resistant starch (placebo) was used as the control.The study was conducted in 20 subjects (9 men and 11 women with a mean age of 50.5+/-7.5 years) using the crossover method, with a single ingestion of either bread containing resistant starch or the placebo. Blood glucose and insulin were measured before ingestion, and at 0.5, 1, 1.5, and 2 h after ingestion. The blood glucose level before ingestion was stratified into a borderline group (blood glucose level >/= 111 mg/dl) and a normal group (blood glucose level 相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号